Cargando…
The voltage sensor of excitation-contraction coupling in skeletal muscle. Ion dependence and selectivity
Manifestations of excitation-contraction (EC) coupling of skeletal muscle were studied in the presence of metal ions of the alkaline and alkaline-earth groups in the extracellular medium. Single cut fibers of frog skeletal muscle were voltage clamped in a double Vaseline gap apparatus, and intramemb...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1989
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228956/ https://www.ncbi.nlm.nih.gov/pubmed/2481710 |
_version_ | 1782150015354929152 |
---|---|
collection | PubMed |
description | Manifestations of excitation-contraction (EC) coupling of skeletal muscle were studied in the presence of metal ions of the alkaline and alkaline-earth groups in the extracellular medium. Single cut fibers of frog skeletal muscle were voltage clamped in a double Vaseline gap apparatus, and intramembrane charge movement and myoplasmic Ca2+ transients were simultaneously measured. In metal-free extracellular media both charge movement of the charge 1 type and Ca transients were suppressed. Under metal-free conditions the nonlinear charge distribution was the same in depolarized (holding potential of 0 mV) and normally polarized fibers (holding potentials between -80 and -90 mV). The manifestations of EC coupling recovered when ions of groups Ia and IIa of the periodic table were included in the extracellular solution; the extent of recovery depended on the ion species. These results are consistent with the idea that the voltage sensor of EC coupling has a binding site for metal cations--the "priming" site--that is essential for function. A state model of the voltage sensor in which metal ligands bind preferentially to the priming site when the sensor is in noninactivated states accounts for the results. This theory was used to derive the relative affinities of the various ions for the priming site from the magnitude of the EC coupling response. The selectivity sequence thus constructed is: Ca greater than Sr greater than Mg greater than Ba for group IIa cations and Li greater than Na greater than K greater than Rb greater than Cs for group Ia. Ca2+, the most effective of all ions tested, was 1,500-fold more effective than Na+. This selectivity sequence is qualitatively and quantitatively similar to that of the intrapore binding sites of the L-type cardiac Ca channel. This provides further evidence of molecular similarity between the voltage sensor and Ca channels. |
format | Text |
id | pubmed-2228956 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1989 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22289562008-04-23 The voltage sensor of excitation-contraction coupling in skeletal muscle. Ion dependence and selectivity J Gen Physiol Articles Manifestations of excitation-contraction (EC) coupling of skeletal muscle were studied in the presence of metal ions of the alkaline and alkaline-earth groups in the extracellular medium. Single cut fibers of frog skeletal muscle were voltage clamped in a double Vaseline gap apparatus, and intramembrane charge movement and myoplasmic Ca2+ transients were simultaneously measured. In metal-free extracellular media both charge movement of the charge 1 type and Ca transients were suppressed. Under metal-free conditions the nonlinear charge distribution was the same in depolarized (holding potential of 0 mV) and normally polarized fibers (holding potentials between -80 and -90 mV). The manifestations of EC coupling recovered when ions of groups Ia and IIa of the periodic table were included in the extracellular solution; the extent of recovery depended on the ion species. These results are consistent with the idea that the voltage sensor of EC coupling has a binding site for metal cations--the "priming" site--that is essential for function. A state model of the voltage sensor in which metal ligands bind preferentially to the priming site when the sensor is in noninactivated states accounts for the results. This theory was used to derive the relative affinities of the various ions for the priming site from the magnitude of the EC coupling response. The selectivity sequence thus constructed is: Ca greater than Sr greater than Mg greater than Ba for group IIa cations and Li greater than Na greater than K greater than Rb greater than Cs for group Ia. Ca2+, the most effective of all ions tested, was 1,500-fold more effective than Na+. This selectivity sequence is qualitatively and quantitatively similar to that of the intrapore binding sites of the L-type cardiac Ca channel. This provides further evidence of molecular similarity between the voltage sensor and Ca channels. The Rockefeller University Press 1989-09-01 /pmc/articles/PMC2228956/ /pubmed/2481710 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles The voltage sensor of excitation-contraction coupling in skeletal muscle. Ion dependence and selectivity |
title | The voltage sensor of excitation-contraction coupling in skeletal muscle. Ion dependence and selectivity |
title_full | The voltage sensor of excitation-contraction coupling in skeletal muscle. Ion dependence and selectivity |
title_fullStr | The voltage sensor of excitation-contraction coupling in skeletal muscle. Ion dependence and selectivity |
title_full_unstemmed | The voltage sensor of excitation-contraction coupling in skeletal muscle. Ion dependence and selectivity |
title_short | The voltage sensor of excitation-contraction coupling in skeletal muscle. Ion dependence and selectivity |
title_sort | voltage sensor of excitation-contraction coupling in skeletal muscle. ion dependence and selectivity |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228956/ https://www.ncbi.nlm.nih.gov/pubmed/2481710 |