Cargando…
Kinetics of contraction initiated by flash photolysis of caged adenosine triphosphate in tonic and phasic smooth muscles
Laser flash photolysis of caged adenosine triphosphate (ATP), in the presence of Ca2+, was used to examine the time course of isometric force development from rigor states in glycerinated tonic (rabbit trachealis) and phasic (guinea-pig ileum and portal vein) smooth muscles. Photolytic liberation of...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1989
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228968/ https://www.ncbi.nlm.nih.gov/pubmed/2559141 |
Sumario: | Laser flash photolysis of caged adenosine triphosphate (ATP), in the presence of Ca2+, was used to examine the time course of isometric force development from rigor states in glycerinated tonic (rabbit trachealis) and phasic (guinea-pig ileum and portal vein) smooth muscles. Photolytic liberation of ATP from caged ATP initiated force development, at 20 degrees C, with half-time (t1/2) of 5.4 s in trachealis and 1.2-2.2 s in the phasic muscles. Prior to photolysis, some muscles were phosphorylated with ATP plus okadaic acid (an inhibitor of myosin light-chain phosphatase) or thiophosphorylated with ATP gamma S to fully activate the regulatory system, before turning on the contractile apparatus. In these prephosphorylated muscles, force development, after caged ATP photolysis, was more rapid than in the unphosphorylated muscles, but the t1/2 values for trachealis (0.8-1.1 s) were still longer than for ileum and portal-vein muscles (0.20-0.25 s). The results suggest that both the contractile machinery and the regulatory system are slower in the tonic than in the phasic smooth muscles. The time course of force development for each muscle type was sigmoidal, with an initial delay (td) of approximately 10% of the t1/2 value. Some possible chemical and mechanical origins of the delay are discussed. |
---|