Cargando…
Voltage-dependent block of charge movement components by nifedipine in frog skeletal muscle
Potential-dependent inhibition of charge movement components by nifedipine was studied in intact, voltage-clamped, frog skeletal muscle fibers. Available charge was reduced by small shifts in holding potential (from -100 mV to -70 mV) in 2 microM nifedipine, without changes in the capacitance deduce...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1990
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228997/ https://www.ncbi.nlm.nih.gov/pubmed/2230711 |
_version_ | 1782150025250340864 |
---|---|
collection | PubMed |
description | Potential-dependent inhibition of charge movement components by nifedipine was studied in intact, voltage-clamped, frog skeletal muscle fibers. Available charge was reduced by small shifts in holding potential (from -100 mV to -70 mV) in 2 microM nifedipine, without changes in the capacitance deduced from control (-120 mV to -100 mV) voltage steps made at a fully polarized (-100 mV) holding potential. These voltage-dependent effects did not occur in lower (0-0.5 microM) nifedipine concentrations. The voltage dependence of membrane capacitance at higher (10 microM) nifedipine concentrations was reduced even in fully polarized fibers, but shifting the holding voltage produced no further block. Voltage-dependent inhibition by nifedipine was associated with a fall in available charge, and a reduction in the charge and capacitance-voltage relationships and of late (q gamma) charging transients. It thus separated a membrane-capacitance with a distinct and steep steady-state voltage dependence. Tetracaine (2 mM) reduced voltage-dependent membrane capacitance and nonlinear charge more than did nifedipine. However, nifedipine did not exert voltage- dependent effects on charging currents, membrane capacitance, or inactivation of tetracaine-resistant (q beta) charge. This excludes participation of q beta, or the membrane charge as a whole, from the voltage-dependent effects of nifedipine. Rather, the findings suggest that the charge susceptible to potential-dependent block by nifedipine falls within the tetracaine-sensitive (q gamma) category of intramembrane charge. |
format | Text |
id | pubmed-2228997 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1990 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22289972008-04-23 Voltage-dependent block of charge movement components by nifedipine in frog skeletal muscle J Gen Physiol Articles Potential-dependent inhibition of charge movement components by nifedipine was studied in intact, voltage-clamped, frog skeletal muscle fibers. Available charge was reduced by small shifts in holding potential (from -100 mV to -70 mV) in 2 microM nifedipine, without changes in the capacitance deduced from control (-120 mV to -100 mV) voltage steps made at a fully polarized (-100 mV) holding potential. These voltage-dependent effects did not occur in lower (0-0.5 microM) nifedipine concentrations. The voltage dependence of membrane capacitance at higher (10 microM) nifedipine concentrations was reduced even in fully polarized fibers, but shifting the holding voltage produced no further block. Voltage-dependent inhibition by nifedipine was associated with a fall in available charge, and a reduction in the charge and capacitance-voltage relationships and of late (q gamma) charging transients. It thus separated a membrane-capacitance with a distinct and steep steady-state voltage dependence. Tetracaine (2 mM) reduced voltage-dependent membrane capacitance and nonlinear charge more than did nifedipine. However, nifedipine did not exert voltage- dependent effects on charging currents, membrane capacitance, or inactivation of tetracaine-resistant (q beta) charge. This excludes participation of q beta, or the membrane charge as a whole, from the voltage-dependent effects of nifedipine. Rather, the findings suggest that the charge susceptible to potential-dependent block by nifedipine falls within the tetracaine-sensitive (q gamma) category of intramembrane charge. The Rockefeller University Press 1990-09-01 /pmc/articles/PMC2228997/ /pubmed/2230711 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Voltage-dependent block of charge movement components by nifedipine in frog skeletal muscle |
title | Voltage-dependent block of charge movement components by nifedipine in frog skeletal muscle |
title_full | Voltage-dependent block of charge movement components by nifedipine in frog skeletal muscle |
title_fullStr | Voltage-dependent block of charge movement components by nifedipine in frog skeletal muscle |
title_full_unstemmed | Voltage-dependent block of charge movement components by nifedipine in frog skeletal muscle |
title_short | Voltage-dependent block of charge movement components by nifedipine in frog skeletal muscle |
title_sort | voltage-dependent block of charge movement components by nifedipine in frog skeletal muscle |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228997/ https://www.ncbi.nlm.nih.gov/pubmed/2230711 |