Cargando…

Translocation mechanism of Na-Ca exchange in single cardiac cells of guinea pig

We have studied in single cardiac ventricular cells of guinea pig the ionic translocation mechanism of the electrogenic Na-Ca exchange, i.e., whether Na and Ca ions countercross the membrane simultaneously or consecutively with "ping pong" kinetics. The dose-response relation between the e...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1990
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229008/
https://www.ncbi.nlm.nih.gov/pubmed/2258716
Descripción
Sumario:We have studied in single cardiac ventricular cells of guinea pig the ionic translocation mechanism of the electrogenic Na-Ca exchange, i.e., whether Na and Ca ions countercross the membrane simultaneously or consecutively with "ping pong" kinetics. The dose-response relation between the external Ca concentrations [( Ca]o) and the current density of the outward Na-Ca exchange current were measured at three different intracellular Na concentrations [( Na]i) in the absence of external Na. Nonlinear regression curves of the dose-response relation obtained by computer revealed Michaelis-Menten type hyperbola from which the [Ca]o giving a half-maximal response (apparent KmCao or K'mCao) and the apparent maximum current magnitude (I'max) were estimated at each [Na]i. As [Na]i increased, the K'mCao increased progressively and the value of K'mCao/I'max tended to decrease. These results are consistent with the simultaneous mechanism. The K'mCao/I'max values, however, were small and close to each other, so it was not possible to completely preclude a consecutive mechanism.