Cargando…

Stretch of active muscle during the declining phase of the calcium transient produces biphasic changes in calcium binding to the activating sites

In voltage-clamped barnacle single muscle fibers, muscle shortening during the declining phase of the calcium transient increases myoplasmic calcium. This extra calcium is probably released from the activating sites by a change in affinity when cross-bridges break (Gordon, A. M., and E. B. Ridgway,...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1990
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229024/
https://www.ncbi.nlm.nih.gov/pubmed/2280251
Descripción
Sumario:In voltage-clamped barnacle single muscle fibers, muscle shortening during the declining phase of the calcium transient increases myoplasmic calcium. This extra calcium is probably released from the activating sites by a change in affinity when cross-bridges break (Gordon, A. M., and E. B. Ridgway, 1987. J. Gen. Physiol. 90:321-340). Stretching the muscle at similar times causes a more complex response, a rapid increase in intracellular calcium followed by a transient decrease. The amplitudes of both phases increase with the rate and amplitude of stretch. The rapid increase, however, appears only when the muscle is stretched more than approximately 0.4%. This is above the length change that produces the breakpoint in the force record during a ramp stretch. This positive phase in response to large stretches is similar to that seen on equivalent shortening at the same point in the contraction. For stretches at different times during the calcium transient, the peak amplitude of the positive phase has a time course that is delayed relative to the calcium transient, while the peak decrease during the negative phase has an earlier time course that is more similar to the calcium transient. The amplitudes of both phases increase with increasing strength of stimulation and consequent force. When the initial muscle the active force. A large decrease in length (which drops the active force to zero) decreases the extra calcium seen on a subsequent restretch. After such a shortening step, the extra calcium on stretch recovers (50 ms half time) toward the control level with the same time course as the redeveloped force. Conversely, stretching an active fiber decreases the extra calcium on a subsequent shortening step that is imposed shortly afterward. Enhanced calcium binding due to increased length alone cannot explain our data. We hypothesize that the calcium affinity of the activating sites increases with cross-bridge attachment and further with cross-bridge strain. This accounts for the biphasic response to stretch as follows: cross-bridges detached by stretch first decrease calcium affinity, then upon reattachment increase calcium affinity due to the strained configuration brought on by the stretch. The experiments suggest that cross-bridge attachment and strain can modify calcium binding to the activating sites in intact muscle.