Cargando…

Kinetics of a Ca(2+)-sensitive cross-bridge state transition in skeletal muscle fibers. Effects due to variations in thin filament activation by extraction of troponin C

The rate constant of tension redevelopment (ktr; 1986. Proc. Natl. Acad. Sci. USA. 83:3542-3546) was determined at various levels of thin filament activation in skinned single fibers from mammalian fast twitch muscles. Activation was altered by (a) varying the concentration of free Ca2+ in the activ...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1991
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229056/
https://www.ncbi.nlm.nih.gov/pubmed/1940850
_version_ 1782150039200595968
collection PubMed
description The rate constant of tension redevelopment (ktr; 1986. Proc. Natl. Acad. Sci. USA. 83:3542-3546) was determined at various levels of thin filament activation in skinned single fibers from mammalian fast twitch muscles. Activation was altered by (a) varying the concentration of free Ca2+ in the activating solution, or (b) extracting various amounts of troponin C (TnC) from whole troponin complexes while keeping the concentration of Ca2+ constant. TnC was extracted by bathing the fiber in a solution containing 5 mM EDTA, 10 mM HEPES, and 0.5 mM trifluoperazine dihydrochloride. Partial extraction of TnC resulted in a decrease in the Ca2+ sensitivity of isometric tension, presumably due to disruption of near-neighbor molecular cooperativity between functional groups (i.e., seven actin monomers plus associated troponin and tropomyosin) within the thin filament. Altering the level of thin filament activation by partial extraction of TnC while keeping Ca2+ concentration constant tested whether the Ca2+ sensitivity of ktr results from a direct effect of Ca2+ on cross-bridge state transitions or, alternatively, an indirect effect of Ca2+ on these transitions due to varying extents of thin filament activation. Results showed that the ktr-pCa relation was unaffected by partial extraction of TnC, while steady-state isometric tension exhibited the expected reduction in Ca2+ sensitivity. This finding provides evidence for a direct effect of Ca2+ on an apparent rate constant that limits the formation of force-bearing cross-bridge states in muscle fibers. Further, the kinetics of this transition are unaffected by disruption of near-neighbor thin filament cooperativity subsequent to extraction of TnC. Finally, the results support the idea that the steepness of the steady-state isometric tension-calcium relationship is at least in part due to mechanisms involving molecular cooperativity among thin filament regulatory proteins.
format Text
id pubmed-2229056
institution National Center for Biotechnology Information
language English
publishDate 1991
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22290562008-04-23 Kinetics of a Ca(2+)-sensitive cross-bridge state transition in skeletal muscle fibers. Effects due to variations in thin filament activation by extraction of troponin C J Gen Physiol Articles The rate constant of tension redevelopment (ktr; 1986. Proc. Natl. Acad. Sci. USA. 83:3542-3546) was determined at various levels of thin filament activation in skinned single fibers from mammalian fast twitch muscles. Activation was altered by (a) varying the concentration of free Ca2+ in the activating solution, or (b) extracting various amounts of troponin C (TnC) from whole troponin complexes while keeping the concentration of Ca2+ constant. TnC was extracted by bathing the fiber in a solution containing 5 mM EDTA, 10 mM HEPES, and 0.5 mM trifluoperazine dihydrochloride. Partial extraction of TnC resulted in a decrease in the Ca2+ sensitivity of isometric tension, presumably due to disruption of near-neighbor molecular cooperativity between functional groups (i.e., seven actin monomers plus associated troponin and tropomyosin) within the thin filament. Altering the level of thin filament activation by partial extraction of TnC while keeping Ca2+ concentration constant tested whether the Ca2+ sensitivity of ktr results from a direct effect of Ca2+ on cross-bridge state transitions or, alternatively, an indirect effect of Ca2+ on these transitions due to varying extents of thin filament activation. Results showed that the ktr-pCa relation was unaffected by partial extraction of TnC, while steady-state isometric tension exhibited the expected reduction in Ca2+ sensitivity. This finding provides evidence for a direct effect of Ca2+ on an apparent rate constant that limits the formation of force-bearing cross-bridge states in muscle fibers. Further, the kinetics of this transition are unaffected by disruption of near-neighbor thin filament cooperativity subsequent to extraction of TnC. Finally, the results support the idea that the steepness of the steady-state isometric tension-calcium relationship is at least in part due to mechanisms involving molecular cooperativity among thin filament regulatory proteins. The Rockefeller University Press 1991-08-01 /pmc/articles/PMC2229056/ /pubmed/1940850 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Kinetics of a Ca(2+)-sensitive cross-bridge state transition in skeletal muscle fibers. Effects due to variations in thin filament activation by extraction of troponin C
title Kinetics of a Ca(2+)-sensitive cross-bridge state transition in skeletal muscle fibers. Effects due to variations in thin filament activation by extraction of troponin C
title_full Kinetics of a Ca(2+)-sensitive cross-bridge state transition in skeletal muscle fibers. Effects due to variations in thin filament activation by extraction of troponin C
title_fullStr Kinetics of a Ca(2+)-sensitive cross-bridge state transition in skeletal muscle fibers. Effects due to variations in thin filament activation by extraction of troponin C
title_full_unstemmed Kinetics of a Ca(2+)-sensitive cross-bridge state transition in skeletal muscle fibers. Effects due to variations in thin filament activation by extraction of troponin C
title_short Kinetics of a Ca(2+)-sensitive cross-bridge state transition in skeletal muscle fibers. Effects due to variations in thin filament activation by extraction of troponin C
title_sort kinetics of a ca(2+)-sensitive cross-bridge state transition in skeletal muscle fibers. effects due to variations in thin filament activation by extraction of troponin c
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229056/
https://www.ncbi.nlm.nih.gov/pubmed/1940850