Cargando…

Changes of myoplasmic calcium concentration during fatigue in single mouse muscle fibers

Measurements of the intracellular free concentration of Ca2+ ([Ca2+]i) were performed during fatiguing stimulation of intact, single muscle fibers, which were dissected from a mouse foot muscle and loaded with fura-2. Fatigue, which was produced by repeated 100-Hz tetani, generally occurred in three...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1991
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229059/
https://www.ncbi.nlm.nih.gov/pubmed/1761971
_version_ 1782150039903141888
collection PubMed
description Measurements of the intracellular free concentration of Ca2+ ([Ca2+]i) were performed during fatiguing stimulation of intact, single muscle fibers, which were dissected from a mouse foot muscle and loaded with fura-2. Fatigue, which was produced by repeated 100-Hz tetani, generally occurred in three phases. Initially, tension declined rapidly to approximately 90% of the original tension (0.9 Po) and during this period the tetanic [Ca2+]i increased significantly (phase 1). Then followed a lengthy period of almost stable tension production and tetanic [Ca2+]i (phase 2). Finally, both the tetanic [Ca2+]i and tension fell relatively fast (phase 3). The resting [Ca2+]i rose continuously throughout the stimulation period. A 10-s rest period during phase 3 resulted in a significant increase of both tetanic [Ca2+]i and tension, whereas a 10-s pause during phase 2 did not have any marked effect. Application of caffeine under control conditions and early during phase 2 resulted in a substantial increase of the tetanic [Ca2+]i but no marked tension increase, whereas caffeine applied at the end of fatiguing stimulation (tension depressed to approximately 0.3 Po) gave a marked increase of both tetanic [Ca2+]i and tension. The tetanic [Ca2+]i for a given tension was generally higher during fatiguing stimulation than under control conditions. Fatigue developed more rapidly in fibers exposed to cyanide. In these fibers there was no increase of tetanic [Ca2+]i during phase 1 and the increase of the resting [Ca2+]i during fatiguing stimulation was markedly larger. The present results indicate that fatigue produced by repeated tetani is caused by a combination of reduced maximum tension-generating capacity, reduced myofibrillar Ca2+ sensitivity, and reduced Ca2+ release from the sarcoplasmic reticulum. The depression of maximum tension- generating capacity develops early during fatiguing stimulation and it is of greatest importance for the force decline at early stages of fatigue. As fatigue gets more severe, reduced Ca2+ sensitivity and reduced Ca2+ release become quantitatively more important for the tension decline.
format Text
id pubmed-2229059
institution National Center for Biotechnology Information
language English
publishDate 1991
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22290592008-04-23 Changes of myoplasmic calcium concentration during fatigue in single mouse muscle fibers J Gen Physiol Articles Measurements of the intracellular free concentration of Ca2+ ([Ca2+]i) were performed during fatiguing stimulation of intact, single muscle fibers, which were dissected from a mouse foot muscle and loaded with fura-2. Fatigue, which was produced by repeated 100-Hz tetani, generally occurred in three phases. Initially, tension declined rapidly to approximately 90% of the original tension (0.9 Po) and during this period the tetanic [Ca2+]i increased significantly (phase 1). Then followed a lengthy period of almost stable tension production and tetanic [Ca2+]i (phase 2). Finally, both the tetanic [Ca2+]i and tension fell relatively fast (phase 3). The resting [Ca2+]i rose continuously throughout the stimulation period. A 10-s rest period during phase 3 resulted in a significant increase of both tetanic [Ca2+]i and tension, whereas a 10-s pause during phase 2 did not have any marked effect. Application of caffeine under control conditions and early during phase 2 resulted in a substantial increase of the tetanic [Ca2+]i but no marked tension increase, whereas caffeine applied at the end of fatiguing stimulation (tension depressed to approximately 0.3 Po) gave a marked increase of both tetanic [Ca2+]i and tension. The tetanic [Ca2+]i for a given tension was generally higher during fatiguing stimulation than under control conditions. Fatigue developed more rapidly in fibers exposed to cyanide. In these fibers there was no increase of tetanic [Ca2+]i during phase 1 and the increase of the resting [Ca2+]i during fatiguing stimulation was markedly larger. The present results indicate that fatigue produced by repeated tetani is caused by a combination of reduced maximum tension-generating capacity, reduced myofibrillar Ca2+ sensitivity, and reduced Ca2+ release from the sarcoplasmic reticulum. The depression of maximum tension- generating capacity develops early during fatiguing stimulation and it is of greatest importance for the force decline at early stages of fatigue. As fatigue gets more severe, reduced Ca2+ sensitivity and reduced Ca2+ release become quantitatively more important for the tension decline. The Rockefeller University Press 1991-09-01 /pmc/articles/PMC2229059/ /pubmed/1761971 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Changes of myoplasmic calcium concentration during fatigue in single mouse muscle fibers
title Changes of myoplasmic calcium concentration during fatigue in single mouse muscle fibers
title_full Changes of myoplasmic calcium concentration during fatigue in single mouse muscle fibers
title_fullStr Changes of myoplasmic calcium concentration during fatigue in single mouse muscle fibers
title_full_unstemmed Changes of myoplasmic calcium concentration during fatigue in single mouse muscle fibers
title_short Changes of myoplasmic calcium concentration during fatigue in single mouse muscle fibers
title_sort changes of myoplasmic calcium concentration during fatigue in single mouse muscle fibers
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229059/
https://www.ncbi.nlm.nih.gov/pubmed/1761971