Cargando…

Calcium-activated potassium conductance in presynaptic terminals at the crayfish neuromuscular junction

Membrane potential changes that typically evoke transmitter release were studied by recording intracellularly from the excitor axon near presynaptic terminals of the crayfish opener neuromuscular junction. Depolarization of the presynaptic terminal with intracellular current pulses activated a condu...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1991
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229067/
https://www.ncbi.nlm.nih.gov/pubmed/1723748
Descripción
Sumario:Membrane potential changes that typically evoke transmitter release were studied by recording intracellularly from the excitor axon near presynaptic terminals of the crayfish opener neuromuscular junction. Depolarization of the presynaptic terminal with intracellular current pulses activated a conductance that caused a decrease in depolarization during the constant current pulse. This conductance was identified as a calcium-activated potassium conductance, gK(Ca), by its disappearance in a zero-calcium/EGTA medium and its block by cadmium, barium, tetraethylammonium ions, and charybdotoxin. In addition to gK(Ca), a delayed rectifier potassium conductance (gK) is present in or near the presynaptic terminal. Both these potassium conductances are involved in the repolarization of the membrane during a presynaptic action potential.