Cargando…

Ion-specific and general ionic effects on contraction of skinned fast- twitch skeletal muscle from the rabbit

We used single fibers from rabbit psoas muscle, chemically skinned with Triton X-100 nonionic detergent, to determine the salts best suited for adjusting ionic strength of bathing solutions for skinned fibers. As criteria we measured maximal calcium-activated force (Fmax), fiber swelling estimated o...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1991
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229068/
https://www.ncbi.nlm.nih.gov/pubmed/1664455
Descripción
Sumario:We used single fibers from rabbit psoas muscle, chemically skinned with Triton X-100 nonionic detergent, to determine the salts best suited for adjusting ionic strength of bathing solutions for skinned fibers. As criteria we measured maximal calcium-activated force (Fmax), fiber swelling estimated optically, and protein extraction from single fibers determined by polyacrylamide gel electrophoresis with ultrasensitive silver staining. All things considered, the best uni-univalent salt was potassium methanesulfonate, while a number of uni-divalent potassium salts of phosphocreatine, hexamethylenediamine N,N,N',N'-tetraacetic acid, sulfate, and succinate were equally acceptable. Using these salts, we determined that changes in Fmax correlated best with variations of ionic strength (1/2 sigma ci z2i, where ci is the concentration of ion i, and zi is its valence) rather than ionic equivalents (1/2 sigma ci magnitude of zi). Our data indicate that increased ionic strength per sc decreases Fmax, probably by destabilizing the cross-bridge structure in addition to increasing electrostatic shielding of actomyosin interactions.