Cargando…
Presynaptic facilitation at the crayfish neuromuscular junction. Role of calcium-activated potassium conductance
Membrane potential was recorded intracellularly near presynaptic terminals of the excitor axon of the crayfish opener neuromuscular junction (NMJ), while transmitter release was recorded postsynaptically. This study focused on the effects of a presynaptic calcium-activated potassium conductance, gK(...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1991
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229071/ https://www.ncbi.nlm.nih.gov/pubmed/1783897 |
_version_ | 1782150042811891712 |
---|---|
collection | PubMed |
description | Membrane potential was recorded intracellularly near presynaptic terminals of the excitor axon of the crayfish opener neuromuscular junction (NMJ), while transmitter release was recorded postsynaptically. This study focused on the effects of a presynaptic calcium-activated potassium conductance, gK(Ca), on the transmitter release evoked by single and paired depolarizing current pulses. Blocking gK(Ca) by adding tetraethylammonium ion (TEA; 5-20 mM) to a solution containing tetrodotoxin and aminopyridines caused the relation between presynaptic potential and transmitter release to steepen and shift to less depolarized potentials. When two depolarizing current pulses were applied at 20-ms intervals with gK(Ca) not blocked, the presynaptic voltage change to the second (test) pulse was inversely related to the amplitude of the first (conditioning) pulse. This effect of the conditioning prepulse on the response to the test pulse was eliminated by 20 mM TEA and by solutions containing 0 mM Ca2+/1 mM EGTA, suggesting that the reduction in the amplitude of the test pulse was due to activation of gK(Ca) by calcium remaining from the conditioning pulse. In the absence of TEA, facilitation of transmitter release evoked by a test pulse increased as the conditioning pulse grew from -40 to -20 mV, but then decreased with further increase in the conditioning depolarization. A similar nonmonotonic relationship between facilitation and the amplitude of the conditioning depolarization was reported in previous studies using extracellular recording, and interpreted as supporting an additional voltage- dependent step in the activation of transmitter release. We suggest that this result was due instead to activation of a gK(Ca) by the conditioning depolarization, since facilitation of transmitter release increased monotonically with the amplitude of the conditioning depolarization, and the early time course of the decay of facilitation was prolonged when gK(Ca) was blocked. The different time courses for decay of the presynaptic potential (20 ms) and facilitation (greater than 50 ms) suggest either that residual free calcium does not account for facilitation at the crayfish NMJ or that the transmitter release mechanism has a markedly higher affinity or stoichiometry for internal free calcium than does gK(Ca). Finally, our data suggest that the calcium channels responsible for transmitter release at the crayfish NMJ are not of the L, N, or T type. |
format | Text |
id | pubmed-2229071 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1991 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22290712008-04-23 Presynaptic facilitation at the crayfish neuromuscular junction. Role of calcium-activated potassium conductance J Gen Physiol Articles Membrane potential was recorded intracellularly near presynaptic terminals of the excitor axon of the crayfish opener neuromuscular junction (NMJ), while transmitter release was recorded postsynaptically. This study focused on the effects of a presynaptic calcium-activated potassium conductance, gK(Ca), on the transmitter release evoked by single and paired depolarizing current pulses. Blocking gK(Ca) by adding tetraethylammonium ion (TEA; 5-20 mM) to a solution containing tetrodotoxin and aminopyridines caused the relation between presynaptic potential and transmitter release to steepen and shift to less depolarized potentials. When two depolarizing current pulses were applied at 20-ms intervals with gK(Ca) not blocked, the presynaptic voltage change to the second (test) pulse was inversely related to the amplitude of the first (conditioning) pulse. This effect of the conditioning prepulse on the response to the test pulse was eliminated by 20 mM TEA and by solutions containing 0 mM Ca2+/1 mM EGTA, suggesting that the reduction in the amplitude of the test pulse was due to activation of gK(Ca) by calcium remaining from the conditioning pulse. In the absence of TEA, facilitation of transmitter release evoked by a test pulse increased as the conditioning pulse grew from -40 to -20 mV, but then decreased with further increase in the conditioning depolarization. A similar nonmonotonic relationship between facilitation and the amplitude of the conditioning depolarization was reported in previous studies using extracellular recording, and interpreted as supporting an additional voltage- dependent step in the activation of transmitter release. We suggest that this result was due instead to activation of a gK(Ca) by the conditioning depolarization, since facilitation of transmitter release increased monotonically with the amplitude of the conditioning depolarization, and the early time course of the decay of facilitation was prolonged when gK(Ca) was blocked. The different time courses for decay of the presynaptic potential (20 ms) and facilitation (greater than 50 ms) suggest either that residual free calcium does not account for facilitation at the crayfish NMJ or that the transmitter release mechanism has a markedly higher affinity or stoichiometry for internal free calcium than does gK(Ca). Finally, our data suggest that the calcium channels responsible for transmitter release at the crayfish NMJ are not of the L, N, or T type. The Rockefeller University Press 1991-12-01 /pmc/articles/PMC2229071/ /pubmed/1783897 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Presynaptic facilitation at the crayfish neuromuscular junction. Role of calcium-activated potassium conductance |
title | Presynaptic facilitation at the crayfish neuromuscular junction. Role of calcium-activated potassium conductance |
title_full | Presynaptic facilitation at the crayfish neuromuscular junction. Role of calcium-activated potassium conductance |
title_fullStr | Presynaptic facilitation at the crayfish neuromuscular junction. Role of calcium-activated potassium conductance |
title_full_unstemmed | Presynaptic facilitation at the crayfish neuromuscular junction. Role of calcium-activated potassium conductance |
title_short | Presynaptic facilitation at the crayfish neuromuscular junction. Role of calcium-activated potassium conductance |
title_sort | presynaptic facilitation at the crayfish neuromuscular junction. role of calcium-activated potassium conductance |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229071/ https://www.ncbi.nlm.nih.gov/pubmed/1783897 |