Cargando…

Kinetic analysis of cAMP-activated Na+ current in the molluscan neuron. A diffusion-reaction model

cAMP-activated Na+ current (INa,cAMP) was studied in voltage-clamped neurons of the seaslug Pleurobranchaea californica. The current response to injected cAMP varied in both time course and amplitude as the tip of an intracellular injection electrode was moved from the periphery to the center of the...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1991
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229076/
https://www.ncbi.nlm.nih.gov/pubmed/1720449
_version_ 1782150044021948416
collection PubMed
description cAMP-activated Na+ current (INa,cAMP) was studied in voltage-clamped neurons of the seaslug Pleurobranchaea californica. The current response to injected cAMP varied in both time course and amplitude as the tip of an intracellular injection electrode was moved from the periphery to the center of the neuron soma. The latency from injection to peak response was dependent on the amount of cAMP injected unless the electrode was centered within the cell. Decay of the INa,cAMP response was slowed by phosphodiesterase inhibition. These observations suggest that the kinetics of the INa,cAMP response are governed by cAMP diffusion and degradation. Phosphodiesterase inhibition induced a persistent inward current. At lower concentrations of inhibitor, INa,cAMP response amplitude increased as expected for decreased hydrolysis rate of injected cAMP. Higher inhibitor concentrations decreased INa,cAMP response amplitude, suggesting that inhibitor- induced increase in native cAMP increased basal INa,cAMP and thus caused partial saturation of the current. The Hill coefficient estimated from the plot of injected cAMP to INa,cAMP response amplitude was close to 1.0. An equation modeling INa,cAMP incorporated terms for diffusion and degradation. In it, the first-order rate constant of phosphodiesterase activity was taken as the rate constant of the exponential decay of the INa,cAMP response. The stoichiometry of INa,cAMP activation was inferred from the Hill coefficient as 1 cAMP/channel. The equation closely fitted the INa,cAMP response and simulated changes in the waveform of the response induced by phosphodiesterase inhibition. With modifications to accommodate asymmetric INa,cAMP activation, the equation also simulated effects of eccentric electrode position. The simple reaction-diffusion model of the kinetics of INa,cAMP may provide a useful conceptual framework within which to investigate the modulation of INa,cAMP by neuromodulators, intracellular regulatory factors, and pharmacological agents.
format Text
id pubmed-2229076
institution National Center for Biotechnology Information
language English
publishDate 1991
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22290762008-04-23 Kinetic analysis of cAMP-activated Na+ current in the molluscan neuron. A diffusion-reaction model J Gen Physiol Articles cAMP-activated Na+ current (INa,cAMP) was studied in voltage-clamped neurons of the seaslug Pleurobranchaea californica. The current response to injected cAMP varied in both time course and amplitude as the tip of an intracellular injection electrode was moved from the periphery to the center of the neuron soma. The latency from injection to peak response was dependent on the amount of cAMP injected unless the electrode was centered within the cell. Decay of the INa,cAMP response was slowed by phosphodiesterase inhibition. These observations suggest that the kinetics of the INa,cAMP response are governed by cAMP diffusion and degradation. Phosphodiesterase inhibition induced a persistent inward current. At lower concentrations of inhibitor, INa,cAMP response amplitude increased as expected for decreased hydrolysis rate of injected cAMP. Higher inhibitor concentrations decreased INa,cAMP response amplitude, suggesting that inhibitor- induced increase in native cAMP increased basal INa,cAMP and thus caused partial saturation of the current. The Hill coefficient estimated from the plot of injected cAMP to INa,cAMP response amplitude was close to 1.0. An equation modeling INa,cAMP incorporated terms for diffusion and degradation. In it, the first-order rate constant of phosphodiesterase activity was taken as the rate constant of the exponential decay of the INa,cAMP response. The stoichiometry of INa,cAMP activation was inferred from the Hill coefficient as 1 cAMP/channel. The equation closely fitted the INa,cAMP response and simulated changes in the waveform of the response induced by phosphodiesterase inhibition. With modifications to accommodate asymmetric INa,cAMP activation, the equation also simulated effects of eccentric electrode position. The simple reaction-diffusion model of the kinetics of INa,cAMP may provide a useful conceptual framework within which to investigate the modulation of INa,cAMP by neuromodulators, intracellular regulatory factors, and pharmacological agents. The Rockefeller University Press 1991-10-01 /pmc/articles/PMC2229076/ /pubmed/1720449 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Kinetic analysis of cAMP-activated Na+ current in the molluscan neuron. A diffusion-reaction model
title Kinetic analysis of cAMP-activated Na+ current in the molluscan neuron. A diffusion-reaction model
title_full Kinetic analysis of cAMP-activated Na+ current in the molluscan neuron. A diffusion-reaction model
title_fullStr Kinetic analysis of cAMP-activated Na+ current in the molluscan neuron. A diffusion-reaction model
title_full_unstemmed Kinetic analysis of cAMP-activated Na+ current in the molluscan neuron. A diffusion-reaction model
title_short Kinetic analysis of cAMP-activated Na+ current in the molluscan neuron. A diffusion-reaction model
title_sort kinetic analysis of camp-activated na+ current in the molluscan neuron. a diffusion-reaction model
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229076/
https://www.ncbi.nlm.nih.gov/pubmed/1720449