Cargando…

Cadmium block of squid calcium currents. Macroscopic data and a kinetic model

The mechanism of Cd2+ block of Ca2+ currents (ICa) was explored in squid neurons using whole-cell patch clamp. Control currents activated sigmoidally, more rapidly at more positive potentials, and did not inactivate significantly. External Cd2+ up to 250 microM reduced ICa reversibly. For small depo...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1991
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229079/
https://www.ncbi.nlm.nih.gov/pubmed/1660061
_version_ 1782150044718202880
collection PubMed
description The mechanism of Cd2+ block of Ca2+ currents (ICa) was explored in squid neurons using whole-cell patch clamp. Control currents activated sigmoidally, more rapidly at more positive potentials, and did not inactivate significantly. External Cd2+ up to 250 microM reduced ICa reversibly. For small depolarizations, the current for a step of 10 ms increased to a maintained value, resembling the control; but for Vm greater than 0 mV, the increase was followed by a decrease, as Cd2+ block became greater. Final block was greater for larger depolarizations. At 0 mV the half-blocking concentration was 125 microM. Tail currents, measured as channels close, had an initial "hook" when recorded in Cd2+: currents increased transiently, then decreased. This suggests that Cd2+ escapes from some channels, which then conduct briefly before closing. Analysis of tail currents shows that Cd2+ does not slow channel closing. The data can be explained if Cd2+ is a permeant blocker of Ca2+ channels and if channels can close when occupied by Cd2+. Cd2+ permeates the channels, but binds transiently to a site in the pore, obstructing the passage of other ions (e.g., Ca2+). Dwell time depends on the transmembrane potential, becoming shorter for more negative internal potentials. A five-state model was used to simulate the steady-state and kinetic features. It combines a Hodgkin-Huxley type m2 gating scheme and a one-site Woodhull ionic blockage model for a permeant blocker and includes a closed blocked state. To fit the data, the binding site for Cd2+ had to be near the outer end of the pore, with a well depth of -12.2 RT, and with a barrier at each end of the pore. The model predicts that the Cd2+ entry rate is nearly voltage independent, but the exit rate is steeply voltage dependent (e-fold/17 mV). Analysis further suggests that the channel closes at a normal rate with Cd2+ in the pore.
format Text
id pubmed-2229079
institution National Center for Biotechnology Information
language English
publishDate 1991
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22290792008-04-23 Cadmium block of squid calcium currents. Macroscopic data and a kinetic model J Gen Physiol Articles The mechanism of Cd2+ block of Ca2+ currents (ICa) was explored in squid neurons using whole-cell patch clamp. Control currents activated sigmoidally, more rapidly at more positive potentials, and did not inactivate significantly. External Cd2+ up to 250 microM reduced ICa reversibly. For small depolarizations, the current for a step of 10 ms increased to a maintained value, resembling the control; but for Vm greater than 0 mV, the increase was followed by a decrease, as Cd2+ block became greater. Final block was greater for larger depolarizations. At 0 mV the half-blocking concentration was 125 microM. Tail currents, measured as channels close, had an initial "hook" when recorded in Cd2+: currents increased transiently, then decreased. This suggests that Cd2+ escapes from some channels, which then conduct briefly before closing. Analysis of tail currents shows that Cd2+ does not slow channel closing. The data can be explained if Cd2+ is a permeant blocker of Ca2+ channels and if channels can close when occupied by Cd2+. Cd2+ permeates the channels, but binds transiently to a site in the pore, obstructing the passage of other ions (e.g., Ca2+). Dwell time depends on the transmembrane potential, becoming shorter for more negative internal potentials. A five-state model was used to simulate the steady-state and kinetic features. It combines a Hodgkin-Huxley type m2 gating scheme and a one-site Woodhull ionic blockage model for a permeant blocker and includes a closed blocked state. To fit the data, the binding site for Cd2+ had to be near the outer end of the pore, with a well depth of -12.2 RT, and with a barrier at each end of the pore. The model predicts that the Cd2+ entry rate is nearly voltage independent, but the exit rate is steeply voltage dependent (e-fold/17 mV). Analysis further suggests that the channel closes at a normal rate with Cd2+ in the pore. The Rockefeller University Press 1991-10-01 /pmc/articles/PMC2229079/ /pubmed/1660061 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Cadmium block of squid calcium currents. Macroscopic data and a kinetic model
title Cadmium block of squid calcium currents. Macroscopic data and a kinetic model
title_full Cadmium block of squid calcium currents. Macroscopic data and a kinetic model
title_fullStr Cadmium block of squid calcium currents. Macroscopic data and a kinetic model
title_full_unstemmed Cadmium block of squid calcium currents. Macroscopic data and a kinetic model
title_short Cadmium block of squid calcium currents. Macroscopic data and a kinetic model
title_sort cadmium block of squid calcium currents. macroscopic data and a kinetic model
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229079/
https://www.ncbi.nlm.nih.gov/pubmed/1660061