Cargando…
Sensitivity and transduction mechanisms of responses to general odorants in turtle vomeronasal system
(a) The responses of the vomeronasal organ to general odorants in the turtle, Geoclemys reevesii, were measured by recording the accessory olfactory bulbar responses. The threshold concentrations of the vomeronasal responses to various odorants were similar to those in main olfactory bulbar response...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1991
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229097/ https://www.ncbi.nlm.nih.gov/pubmed/1765762 |
_version_ | 1782150049047773184 |
---|---|
collection | PubMed |
description | (a) The responses of the vomeronasal organ to general odorants in the turtle, Geoclemys reevesii, were measured by recording the accessory olfactory bulbar responses. The threshold concentrations of the vomeronasal responses to various odorants were similar to those in main olfactory bulbar responses, indicating that vomeronasal cells lacking cilia and olfactory cells having many cilia have similar sensitivities to general odorants. (b) The vomeronasal epithelium was perfused with 100 mM NaCl solution and the salt-free solution and the effects of NaCl on the vomeronasal responses to various odorants were examined. There was no essential difference between the concentration-response curves for n-amyl acetate and menthone dissolved in 100 mM NaCl solution and those dissolved in the salt-free solution in the whole concentration range examined. The ratios of the magnitudes of vomeronasal responses in the salt-free solution to those in 100 mM NaCl solution were between 1.01 and 1.10 for seven odorants tested. (c) The magnitudes of responses to the odorants were unchanged by changes in NaCl concentrations. The replacement of Na+ with organic cations such as choline+, Bis-Tris propane2+, and N-acetyl-D-glucosamine+ did not affect the magnitudes of the responses to the odorants. The Na channel blocker amiloride also did not affect the responses. (d) The vomeronasal responses were practically unchanged by changes in CaCl2 concentration. The Ca channel blockers diltiazem and verapamil did not affect the responses. (e) The replacement of Cl- with SO4(2-) did not affect the magnitudes of the vomeronasal responses. (f) The present results suggest that ion transport across the apical membranes of vomeronasal receptor cells does not contribute to the responses to odorants in the turtle. |
format | Text |
id | pubmed-2229097 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1991 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22290972008-04-23 Sensitivity and transduction mechanisms of responses to general odorants in turtle vomeronasal system J Gen Physiol Articles (a) The responses of the vomeronasal organ to general odorants in the turtle, Geoclemys reevesii, were measured by recording the accessory olfactory bulbar responses. The threshold concentrations of the vomeronasal responses to various odorants were similar to those in main olfactory bulbar responses, indicating that vomeronasal cells lacking cilia and olfactory cells having many cilia have similar sensitivities to general odorants. (b) The vomeronasal epithelium was perfused with 100 mM NaCl solution and the salt-free solution and the effects of NaCl on the vomeronasal responses to various odorants were examined. There was no essential difference between the concentration-response curves for n-amyl acetate and menthone dissolved in 100 mM NaCl solution and those dissolved in the salt-free solution in the whole concentration range examined. The ratios of the magnitudes of vomeronasal responses in the salt-free solution to those in 100 mM NaCl solution were between 1.01 and 1.10 for seven odorants tested. (c) The magnitudes of responses to the odorants were unchanged by changes in NaCl concentrations. The replacement of Na+ with organic cations such as choline+, Bis-Tris propane2+, and N-acetyl-D-glucosamine+ did not affect the magnitudes of the responses to the odorants. The Na channel blocker amiloride also did not affect the responses. (d) The vomeronasal responses were practically unchanged by changes in CaCl2 concentration. The Ca channel blockers diltiazem and verapamil did not affect the responses. (e) The replacement of Cl- with SO4(2-) did not affect the magnitudes of the vomeronasal responses. (f) The present results suggest that ion transport across the apical membranes of vomeronasal receptor cells does not contribute to the responses to odorants in the turtle. The Rockefeller University Press 1991-11-01 /pmc/articles/PMC2229097/ /pubmed/1765762 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Sensitivity and transduction mechanisms of responses to general odorants in turtle vomeronasal system |
title | Sensitivity and transduction mechanisms of responses to general odorants in turtle vomeronasal system |
title_full | Sensitivity and transduction mechanisms of responses to general odorants in turtle vomeronasal system |
title_fullStr | Sensitivity and transduction mechanisms of responses to general odorants in turtle vomeronasal system |
title_full_unstemmed | Sensitivity and transduction mechanisms of responses to general odorants in turtle vomeronasal system |
title_short | Sensitivity and transduction mechanisms of responses to general odorants in turtle vomeronasal system |
title_sort | sensitivity and transduction mechanisms of responses to general odorants in turtle vomeronasal system |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229097/ https://www.ncbi.nlm.nih.gov/pubmed/1765762 |