Cargando…

Quaternary ammonium compounds as structural probes of single batrachotoxin-activated Na+ channels

Quaternary ammonium (QA) blockers are well-known structural probes for studying the permeation pathway of voltage-gated K+ channels. In this study we have examined the effects of a series of n-alkyl- trimethylammonium compounds (Cn-QA) on batrachotoxin (BTX)-activated Na+ channels from skeletal musc...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1991
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229100/
https://www.ncbi.nlm.nih.gov/pubmed/1662681
_version_ 1782150049806942208
collection PubMed
description Quaternary ammonium (QA) blockers are well-known structural probes for studying the permeation pathway of voltage-gated K+ channels. In this study we have examined the effects of a series of n-alkyl- trimethylammonium compounds (Cn-QA) on batrachotoxin (BTX)-activated Na+ channels from skeletal muscle incorporated into planar lipid bilayers. We found that these amphipathic QA compounds (Cn-QA where n = 10-18) block single Na+ channels preferentially from the internal side with equilibrium dissociation constants (KD) in the submicromolar to micromolar range. External application of amphipathic QA compounds is far less effective, by a factor of greater than 200. The block can be described by a QA molecule binding to a single site in the Na+ channel permeation pathway. QA binding affinity is dependent on transmembrane voltage with an effective valence (delta) of approximately 0.5. QA dwell times (given as mean closed times, tau c) increase as a function of n-alkyl chain length, ranging from approximately 13 ms for C10-QA to 500 ms for C18-QA at +50 mV. The results imply that there is a large hydrophobic region within the Na+ channel pore which accepts up to 18 methylene groups of the Cn-QA cation. This hydrophobic domain may be of clinical significance since it also interacts with local anesthetics such as cocaine and mepivacaine. Finally, like BTX-activated Na+ channels in bilayers, unmodified Na+ channels in GH3 cells are also susceptible to QA block. Amphipathic QA cations elicit both tonic and use-dependent inhibitions of normal Na+ currents in a manner similar to that of local anesthetic cocaine. We conclude that amphipathic QA compounds are valuable structural probes to study the permeation pathway of both normal and BTX-activated Na+ channels.
format Text
id pubmed-2229100
institution National Center for Biotechnology Information
language English
publishDate 1991
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22291002008-04-23 Quaternary ammonium compounds as structural probes of single batrachotoxin-activated Na+ channels J Gen Physiol Articles Quaternary ammonium (QA) blockers are well-known structural probes for studying the permeation pathway of voltage-gated K+ channels. In this study we have examined the effects of a series of n-alkyl- trimethylammonium compounds (Cn-QA) on batrachotoxin (BTX)-activated Na+ channels from skeletal muscle incorporated into planar lipid bilayers. We found that these amphipathic QA compounds (Cn-QA where n = 10-18) block single Na+ channels preferentially from the internal side with equilibrium dissociation constants (KD) in the submicromolar to micromolar range. External application of amphipathic QA compounds is far less effective, by a factor of greater than 200. The block can be described by a QA molecule binding to a single site in the Na+ channel permeation pathway. QA binding affinity is dependent on transmembrane voltage with an effective valence (delta) of approximately 0.5. QA dwell times (given as mean closed times, tau c) increase as a function of n-alkyl chain length, ranging from approximately 13 ms for C10-QA to 500 ms for C18-QA at +50 mV. The results imply that there is a large hydrophobic region within the Na+ channel pore which accepts up to 18 methylene groups of the Cn-QA cation. This hydrophobic domain may be of clinical significance since it also interacts with local anesthetics such as cocaine and mepivacaine. Finally, like BTX-activated Na+ channels in bilayers, unmodified Na+ channels in GH3 cells are also susceptible to QA block. Amphipathic QA cations elicit both tonic and use-dependent inhibitions of normal Na+ currents in a manner similar to that of local anesthetic cocaine. We conclude that amphipathic QA compounds are valuable structural probes to study the permeation pathway of both normal and BTX-activated Na+ channels. The Rockefeller University Press 1991-11-01 /pmc/articles/PMC2229100/ /pubmed/1662681 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Quaternary ammonium compounds as structural probes of single batrachotoxin-activated Na+ channels
title Quaternary ammonium compounds as structural probes of single batrachotoxin-activated Na+ channels
title_full Quaternary ammonium compounds as structural probes of single batrachotoxin-activated Na+ channels
title_fullStr Quaternary ammonium compounds as structural probes of single batrachotoxin-activated Na+ channels
title_full_unstemmed Quaternary ammonium compounds as structural probes of single batrachotoxin-activated Na+ channels
title_short Quaternary ammonium compounds as structural probes of single batrachotoxin-activated Na+ channels
title_sort quaternary ammonium compounds as structural probes of single batrachotoxin-activated na+ channels
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229100/
https://www.ncbi.nlm.nih.gov/pubmed/1662681