Cargando…

Dopamine modulates in a differential fashion T- and L-type calcium currents in bass retinal horizontal cells

White bass (Roccus chrysops) retinal horizontal cells possess two types of voltage-activated calcium currents which have recently been characterized with regard to their voltage dependence and pharmacology (Sullivan, J., and E. M. Lasater. 1992. Journal of General Physiology. 99:85-107). A low volta...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1993
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229148/
https://www.ncbi.nlm.nih.gov/pubmed/8228912
Descripción
Sumario:White bass (Roccus chrysops) retinal horizontal cells possess two types of voltage-activated calcium currents which have recently been characterized with regard to their voltage dependence and pharmacology (Sullivan, J., and E. M. Lasater. 1992. Journal of General Physiology. 99:85-107). A low voltage-activated transient current was identified which resembles the T-type calcium current described in a number of other preparations, along with a sustained high threshold, long-lasting calcium current that resembles the L-type calcium current. Here we report on the modulation of horizontal cell calcium channels by dopamine. Under whole-cell voltage clamp conditions favoring the expression of both calcium currents, dopamine had opposing actions on the two types of voltage-sensitive calcium currents in the same cone- type horizontal cell. The L-type calcium current was significantly potentiated by dopamine while the T-type current was simultaneously reduced. Dopamine had no effect on calcium currents in rod-type horizontal cells. Both of dopamine's actions were mimicked with the D1 receptor agonist, SKF 38393, and blocked by application of the D1 specific antagonist, SCH 23390. Dopamine's actions on the two types of calcium currents in white bass horizontal cells are mimicked by the cell membrane-permeant cyclic AMP derivative, 8-(4-chlorophenylthio)- cyclic AMP, suggesting that dopamine's action is linked to a cAMP- mediated second messenger system. Furthermore, the inhibitor of cAMP- dependent protein kinase blocked both of dopamine's actions on the voltage-dependent calcium channels when introduced through the patch pipette. This indicates that protein phosphorylation is involved in modulating horizontal cell calcium channels by dopamine. Taken together, these results show that dopamine has differential effects on the voltage-dependent calcium currents in retinal horizontal cells. The modulation of these currents may play a role in shaping the response properties of horizontal cells.