Cargando…

An allosteric model of the molecular interactions of excitation- contraction coupling in skeletal muscle

A contact interaction is proposed to exist between the voltage sensor of the transverse tubular membrane of skeletal muscle and the calcium release channel of the sarcoplasmic reticulum. This interaction is given a quantitative formulation inspired in the Monod, Wyman, and Changeux model of alloster...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1993
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229153/
https://www.ncbi.nlm.nih.gov/pubmed/8245819
_version_ 1782150062327988224
collection PubMed
description A contact interaction is proposed to exist between the voltage sensor of the transverse tubular membrane of skeletal muscle and the calcium release channel of the sarcoplasmic reticulum. This interaction is given a quantitative formulation inspired in the Monod, Wyman, and Changeux model of allosteric transitions in hemoglobin (Monod, J., J. Wyman, and J.-P. Changeux. 1965. Journal of Molecular Biology. 12:88- 118), and analogous to one proposed by Marks and Jones for voltage- dependent Ca channels (Marks, T. N., and S. W. Jones. 1992. Journal of General Physiology. 99:367-390). The allosteric protein is the calcium release channel, a homotetramer, with two accessible states, closed and open. The kinetics and equilibrium of this transition are modulated by voltage sensors (dihydropyridine receptors) pictured as four units per release channel, each undergoing independent voltage-driven transitions between two states (resting and activating). For each voltage sensor that moves to the activating state, the tendency of the channel to open increases by an equal (large) factor. The equilibrium and kinetic equations of the model are solved and shown to reproduce well a number of experimentally measured relationships including: charge movement (Q) vs. voltage, open probability of the release channel (Po) vs. voltage, the transfer function relationship Po vs. Q, and the kinetics of charge movement, release activation, and deactivation. The main consequence of the assumption of allosteric coupling is that primary effects on the release channel are transmitted backward to the voltage sensor and give secondary effects. Thus, the model reproduces well the effects of perchlorate, described in the two previous articles, under the assumption that the primary effect is to increase the intrinsic tendency of the release channel to open, with no direct effects on the voltage sensor. This modification of the open-closed equilibrium of the release channel causes a shift in the equilibrium dependency of charge movement with voltage. The paradoxical slowing of charge movement by perchlorate also results from reciprocal effects of the channel on the allosterically coupled voltage sensors. The observations of the previous articles plus the simulations in this article constitute functional evidence of allosteric transmission.
format Text
id pubmed-2229153
institution National Center for Biotechnology Information
language English
publishDate 1993
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22291532008-04-23 An allosteric model of the molecular interactions of excitation- contraction coupling in skeletal muscle J Gen Physiol Articles A contact interaction is proposed to exist between the voltage sensor of the transverse tubular membrane of skeletal muscle and the calcium release channel of the sarcoplasmic reticulum. This interaction is given a quantitative formulation inspired in the Monod, Wyman, and Changeux model of allosteric transitions in hemoglobin (Monod, J., J. Wyman, and J.-P. Changeux. 1965. Journal of Molecular Biology. 12:88- 118), and analogous to one proposed by Marks and Jones for voltage- dependent Ca channels (Marks, T. N., and S. W. Jones. 1992. Journal of General Physiology. 99:367-390). The allosteric protein is the calcium release channel, a homotetramer, with two accessible states, closed and open. The kinetics and equilibrium of this transition are modulated by voltage sensors (dihydropyridine receptors) pictured as four units per release channel, each undergoing independent voltage-driven transitions between two states (resting and activating). For each voltage sensor that moves to the activating state, the tendency of the channel to open increases by an equal (large) factor. The equilibrium and kinetic equations of the model are solved and shown to reproduce well a number of experimentally measured relationships including: charge movement (Q) vs. voltage, open probability of the release channel (Po) vs. voltage, the transfer function relationship Po vs. Q, and the kinetics of charge movement, release activation, and deactivation. The main consequence of the assumption of allosteric coupling is that primary effects on the release channel are transmitted backward to the voltage sensor and give secondary effects. Thus, the model reproduces well the effects of perchlorate, described in the two previous articles, under the assumption that the primary effect is to increase the intrinsic tendency of the release channel to open, with no direct effects on the voltage sensor. This modification of the open-closed equilibrium of the release channel causes a shift in the equilibrium dependency of charge movement with voltage. The paradoxical slowing of charge movement by perchlorate also results from reciprocal effects of the channel on the allosterically coupled voltage sensors. The observations of the previous articles plus the simulations in this article constitute functional evidence of allosteric transmission. The Rockefeller University Press 1993-09-01 /pmc/articles/PMC2229153/ /pubmed/8245819 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
An allosteric model of the molecular interactions of excitation- contraction coupling in skeletal muscle
title An allosteric model of the molecular interactions of excitation- contraction coupling in skeletal muscle
title_full An allosteric model of the molecular interactions of excitation- contraction coupling in skeletal muscle
title_fullStr An allosteric model of the molecular interactions of excitation- contraction coupling in skeletal muscle
title_full_unstemmed An allosteric model of the molecular interactions of excitation- contraction coupling in skeletal muscle
title_short An allosteric model of the molecular interactions of excitation- contraction coupling in skeletal muscle
title_sort allosteric model of the molecular interactions of excitation- contraction coupling in skeletal muscle
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229153/
https://www.ncbi.nlm.nih.gov/pubmed/8245819