Cargando…
Whole-cell currents in single and confluent M-1 mouse cortical collecting duct cells
M-1 cells, derived from a microdissected cortical collecting duct of a transgenic mouse, grown to confluence on a permeable support, develop a lumen-negative amiloride-sensitive transepithelial potential, reabsorb sodium, and secrete potassium. Electron micrographs show morphological features typica...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1993
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229168/ https://www.ncbi.nlm.nih.gov/pubmed/8270912 |
_version_ | 1782150065841766400 |
---|---|
collection | PubMed |
description | M-1 cells, derived from a microdissected cortical collecting duct of a transgenic mouse, grown to confluence on a permeable support, develop a lumen-negative amiloride-sensitive transepithelial potential, reabsorb sodium, and secrete potassium. Electron micrographs show morphological features typical of principal cells in vivo. Using the patch clamp technique distinct differences are detected in whole-cell membrane current and voltage (Vm) between single M-1 cells 24 h after seeding vs cells grown to confluence. (a) Under control conditions (pipette: KCl- Ringer; bath: NaCl-Ringer) Vm averages -42.7 +/- 3.4 mV in single cells vs -16.8 +/- 4.1 mV in confluent cells. Whole-cell conductance (Gcell) in confluent cells is 2.6 times higher than in single cells. Cell capacitance values are not significantly different in single vs confluent M-1 cells, arguing against electrical coupling of confluent M- 1 cells. (b) In confluent cells, 10(-4)-10(-5) M amiloride hyperpolarizes Vm to -39.7 +/- 3.0 mV and the amiloride-sensitive fractional conductance of 0.31 shows a sodium to potassium selectivity ratio of approximately 15. In contrast, single cells express no significant amiloride-sensitive conductance. (c) In single M-1 cells, Gcell is dominated by an inwardly rectifying K-conductance, as exposure to high bath K causes a large depolarization and doubling of Gcell. The barium-sensitive fraction of Gcell in symmetrical KCl-Ringer is 0.49 and voltage dependent. (d) In contrast, neither high K nor barium in the apical bath affect confluent M-1 cells, showing that confluent cells lack a significant apical K conductance. (e) Application of 500 microM glibenclamide reduces whole-cell currents in both single and confluent M-1 cells with a glibenclamide-sensitive fractional conductance of 0.71 and 0.83 in single and confluent cells, respectively. Glibenclamide inhibition occurs slower in confluent M-1 cells than in single cells, suggesting a basolateral action of this lipophilic drug on ATP-sensitive basolateral K channels in M-1 cells. (f) A component of the whole-cell conductance in M-1 cells appears as a deactivating outward current during large depolarizing voltage pulses and is abolished by extracellular chloride removal. The deactivating chloride current averages 103.6 +/- 16.1 pA/cell, comprises 24% of the outward current, and decays with a time constant of 179 +/- 13 ms. The outward to inward conductance ratio obtained from deactivating currents and tail currents is 2.4, indicating an outwardly rectifying chloride conductance. |
format | Text |
id | pubmed-2229168 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1993 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22291682008-04-23 Whole-cell currents in single and confluent M-1 mouse cortical collecting duct cells J Gen Physiol Articles M-1 cells, derived from a microdissected cortical collecting duct of a transgenic mouse, grown to confluence on a permeable support, develop a lumen-negative amiloride-sensitive transepithelial potential, reabsorb sodium, and secrete potassium. Electron micrographs show morphological features typical of principal cells in vivo. Using the patch clamp technique distinct differences are detected in whole-cell membrane current and voltage (Vm) between single M-1 cells 24 h after seeding vs cells grown to confluence. (a) Under control conditions (pipette: KCl- Ringer; bath: NaCl-Ringer) Vm averages -42.7 +/- 3.4 mV in single cells vs -16.8 +/- 4.1 mV in confluent cells. Whole-cell conductance (Gcell) in confluent cells is 2.6 times higher than in single cells. Cell capacitance values are not significantly different in single vs confluent M-1 cells, arguing against electrical coupling of confluent M- 1 cells. (b) In confluent cells, 10(-4)-10(-5) M amiloride hyperpolarizes Vm to -39.7 +/- 3.0 mV and the amiloride-sensitive fractional conductance of 0.31 shows a sodium to potassium selectivity ratio of approximately 15. In contrast, single cells express no significant amiloride-sensitive conductance. (c) In single M-1 cells, Gcell is dominated by an inwardly rectifying K-conductance, as exposure to high bath K causes a large depolarization and doubling of Gcell. The barium-sensitive fraction of Gcell in symmetrical KCl-Ringer is 0.49 and voltage dependent. (d) In contrast, neither high K nor barium in the apical bath affect confluent M-1 cells, showing that confluent cells lack a significant apical K conductance. (e) Application of 500 microM glibenclamide reduces whole-cell currents in both single and confluent M-1 cells with a glibenclamide-sensitive fractional conductance of 0.71 and 0.83 in single and confluent cells, respectively. Glibenclamide inhibition occurs slower in confluent M-1 cells than in single cells, suggesting a basolateral action of this lipophilic drug on ATP-sensitive basolateral K channels in M-1 cells. (f) A component of the whole-cell conductance in M-1 cells appears as a deactivating outward current during large depolarizing voltage pulses and is abolished by extracellular chloride removal. The deactivating chloride current averages 103.6 +/- 16.1 pA/cell, comprises 24% of the outward current, and decays with a time constant of 179 +/- 13 ms. The outward to inward conductance ratio obtained from deactivating currents and tail currents is 2.4, indicating an outwardly rectifying chloride conductance. The Rockefeller University Press 1993-10-01 /pmc/articles/PMC2229168/ /pubmed/8270912 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Whole-cell currents in single and confluent M-1 mouse cortical collecting duct cells |
title | Whole-cell currents in single and confluent M-1 mouse cortical collecting duct cells |
title_full | Whole-cell currents in single and confluent M-1 mouse cortical collecting duct cells |
title_fullStr | Whole-cell currents in single and confluent M-1 mouse cortical collecting duct cells |
title_full_unstemmed | Whole-cell currents in single and confluent M-1 mouse cortical collecting duct cells |
title_short | Whole-cell currents in single and confluent M-1 mouse cortical collecting duct cells |
title_sort | whole-cell currents in single and confluent m-1 mouse cortical collecting duct cells |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229168/ https://www.ncbi.nlm.nih.gov/pubmed/8270912 |