Cargando…

On the mechanism of rectification of the isoproterenol-activated chloride current in guinea-pig ventricular myocytes

The whole cell configuration of the patch clamp technique was used to investigate the mechanism underlying rectification of the isoproterenol- activated chloride (Cl-) current in isolated guinea pig ventricular myocytes. When extracellular Cl- was replaced with either bromide (Br- ), glutamate (Glut...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1993
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229181/
https://www.ncbi.nlm.nih.gov/pubmed/8301261
_version_ 1782150068874248192
collection PubMed
description The whole cell configuration of the patch clamp technique was used to investigate the mechanism underlying rectification of the isoproterenol- activated chloride (Cl-) current in isolated guinea pig ventricular myocytes. When extracellular Cl- was replaced with either bromide (Br- ), glutamate (Glut), iodide (I-), isethionate (Iseth), or nitrate (NO3- ), the magnitude of the shift in reversal potential of the macroscopic current suggested the following selectivity sequence: NO3- > Br- > or = Cl- > or = I- > Iseth > or = Glut. This information was used to investigate the role of permeant ions in rectification of this current. Consistent with previous observations, when the concentration of intracellular Cl- (Cli-) was less than the concentration of extracellular Cl- (Clo-) (40 mM Cli-/150 mM Clo-) the current exhibited outward rectification, but when Cli- was increased to equal that outside (150 Cli-/150 Clo-), the current no longer rectified. Rectification in the presence of asymmetrical concentrations of permeant ions on either side of the membrane is predicted by constant field theory, as described by the Goldman-Hodgkin-Katz current equation. However, when the Cl- gradient was reversed (150 Cli-/40 Clo- ) the current did not rectify in the opposite direction, and in the presence of lower symmetrical concentrations of Cl- inside and out (40 Cli-/40 Clo-), outward rectification did not disappear. Reducing Cli- by equimolar replacement with glutamate caused a concentration dependent increase in the degree of rectification. However, when Cli- was replaced with more permeant anions (NO3- and Br-), rectification was not observed. These results can be explained by a single binding site model based on Eyring rate theory, indicating that rectification is a function of the concentration and the permeability of the anions in the intracellular solution.
format Text
id pubmed-2229181
institution National Center for Biotechnology Information
language English
publishDate 1993
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22291812008-04-23 On the mechanism of rectification of the isoproterenol-activated chloride current in guinea-pig ventricular myocytes J Gen Physiol Articles The whole cell configuration of the patch clamp technique was used to investigate the mechanism underlying rectification of the isoproterenol- activated chloride (Cl-) current in isolated guinea pig ventricular myocytes. When extracellular Cl- was replaced with either bromide (Br- ), glutamate (Glut), iodide (I-), isethionate (Iseth), or nitrate (NO3- ), the magnitude of the shift in reversal potential of the macroscopic current suggested the following selectivity sequence: NO3- > Br- > or = Cl- > or = I- > Iseth > or = Glut. This information was used to investigate the role of permeant ions in rectification of this current. Consistent with previous observations, when the concentration of intracellular Cl- (Cli-) was less than the concentration of extracellular Cl- (Clo-) (40 mM Cli-/150 mM Clo-) the current exhibited outward rectification, but when Cli- was increased to equal that outside (150 Cli-/150 Clo-), the current no longer rectified. Rectification in the presence of asymmetrical concentrations of permeant ions on either side of the membrane is predicted by constant field theory, as described by the Goldman-Hodgkin-Katz current equation. However, when the Cl- gradient was reversed (150 Cli-/40 Clo- ) the current did not rectify in the opposite direction, and in the presence of lower symmetrical concentrations of Cl- inside and out (40 Cli-/40 Clo-), outward rectification did not disappear. Reducing Cli- by equimolar replacement with glutamate caused a concentration dependent increase in the degree of rectification. However, when Cli- was replaced with more permeant anions (NO3- and Br-), rectification was not observed. These results can be explained by a single binding site model based on Eyring rate theory, indicating that rectification is a function of the concentration and the permeability of the anions in the intracellular solution. The Rockefeller University Press 1993-11-01 /pmc/articles/PMC2229181/ /pubmed/8301261 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
On the mechanism of rectification of the isoproterenol-activated chloride current in guinea-pig ventricular myocytes
title On the mechanism of rectification of the isoproterenol-activated chloride current in guinea-pig ventricular myocytes
title_full On the mechanism of rectification of the isoproterenol-activated chloride current in guinea-pig ventricular myocytes
title_fullStr On the mechanism of rectification of the isoproterenol-activated chloride current in guinea-pig ventricular myocytes
title_full_unstemmed On the mechanism of rectification of the isoproterenol-activated chloride current in guinea-pig ventricular myocytes
title_short On the mechanism of rectification of the isoproterenol-activated chloride current in guinea-pig ventricular myocytes
title_sort on the mechanism of rectification of the isoproterenol-activated chloride current in guinea-pig ventricular myocytes
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229181/
https://www.ncbi.nlm.nih.gov/pubmed/8301261