Cargando…

Block by ruthenium red of the ryanodine-activated calcium release channel of skeletal muscle

The effects of ruthenium red and the related compounds tetraamine palladium (4APd) and tetraamine platinum (4APt) were studied on the ryanodine activated Ca2+ release channel reconstituted in planar bilayers with the immunoaffinity purified ryanodine receptor. Ruthenium red, applied at submicromolar...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1993
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229184/
https://www.ncbi.nlm.nih.gov/pubmed/7510773
_version_ 1782150069571551232
collection PubMed
description The effects of ruthenium red and the related compounds tetraamine palladium (4APd) and tetraamine platinum (4APt) were studied on the ryanodine activated Ca2+ release channel reconstituted in planar bilayers with the immunoaffinity purified ryanodine receptor. Ruthenium red, applied at submicromolar concentrations to the myoplasmic side (cis), induced an all-or-none flickery block of the ryanodine activated channel. The blocking effect was strongly voltage dependent, as large positive potentials that favored the movement of ruthenium red into the channel conduction pore produced stronger block. The half dissociation constants (Kd) for ruthenium red block of the 500 pS channel were 0.22, 0.38, and 0.62 microM, at +100, +80, and +60 mV, respectively. Multiple ruthenium red molecules seemed to be involved in the inhibition, because a Hill coefficient of close to 2 was obtained from the dose response curve. The half dissociation constant of ruthenium red block of the lower conductance state of the ryanodine activated channel (250 pS) was higher (Kd = 0.82 microM at +100 mV), while the Hill coefficient remained approximately the same (nH = 2.7). Ruthenium red block of the channel was highly asymmetric, as trans ruthenium red produced a different blocking effect. The blocking and unblocking events (induced by cis ruthenium red) can be resolved at the single channel level at a cutoff frequency of 2 kHz. The closing rate of the channel in the presence of ruthenium red increased linearly with ruthenium red concentration, and the unblocking rate of the channel was independent of ruthenium red concentrations. This suggests that ruthenium red block of the channel occurred via a simple blocking mechanism. The on-rate of ruthenium red binding to the channel was 1.32 x 10(9) M-1 s-1, and the off-rate of ruthenium red binding was 0.75 x 10(3) s-1 at +60 mV, in the presence of 200 nM ryanodine. The two related compounds, 4APd and 4APt, blocked the channel in a similar way to that of ruthenium red. These compounds inhibited the open channel with lower affinities (Kd = 170 microM, 4APd; Kd = 656 microM, 4APt), and had Hill coefficients of close to 1. The results suggest that ruthenium red block of the ryanodine receptor is due to binding to multiple sites located in the conduction pore of the channel.
format Text
id pubmed-2229184
institution National Center for Biotechnology Information
language English
publishDate 1993
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22291842008-04-23 Block by ruthenium red of the ryanodine-activated calcium release channel of skeletal muscle J Gen Physiol Articles The effects of ruthenium red and the related compounds tetraamine palladium (4APd) and tetraamine platinum (4APt) were studied on the ryanodine activated Ca2+ release channel reconstituted in planar bilayers with the immunoaffinity purified ryanodine receptor. Ruthenium red, applied at submicromolar concentrations to the myoplasmic side (cis), induced an all-or-none flickery block of the ryanodine activated channel. The blocking effect was strongly voltage dependent, as large positive potentials that favored the movement of ruthenium red into the channel conduction pore produced stronger block. The half dissociation constants (Kd) for ruthenium red block of the 500 pS channel were 0.22, 0.38, and 0.62 microM, at +100, +80, and +60 mV, respectively. Multiple ruthenium red molecules seemed to be involved in the inhibition, because a Hill coefficient of close to 2 was obtained from the dose response curve. The half dissociation constant of ruthenium red block of the lower conductance state of the ryanodine activated channel (250 pS) was higher (Kd = 0.82 microM at +100 mV), while the Hill coefficient remained approximately the same (nH = 2.7). Ruthenium red block of the channel was highly asymmetric, as trans ruthenium red produced a different blocking effect. The blocking and unblocking events (induced by cis ruthenium red) can be resolved at the single channel level at a cutoff frequency of 2 kHz. The closing rate of the channel in the presence of ruthenium red increased linearly with ruthenium red concentration, and the unblocking rate of the channel was independent of ruthenium red concentrations. This suggests that ruthenium red block of the channel occurred via a simple blocking mechanism. The on-rate of ruthenium red binding to the channel was 1.32 x 10(9) M-1 s-1, and the off-rate of ruthenium red binding was 0.75 x 10(3) s-1 at +60 mV, in the presence of 200 nM ryanodine. The two related compounds, 4APd and 4APt, blocked the channel in a similar way to that of ruthenium red. These compounds inhibited the open channel with lower affinities (Kd = 170 microM, 4APd; Kd = 656 microM, 4APt), and had Hill coefficients of close to 1. The results suggest that ruthenium red block of the ryanodine receptor is due to binding to multiple sites located in the conduction pore of the channel. The Rockefeller University Press 1993-12-01 /pmc/articles/PMC2229184/ /pubmed/7510773 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Block by ruthenium red of the ryanodine-activated calcium release channel of skeletal muscle
title Block by ruthenium red of the ryanodine-activated calcium release channel of skeletal muscle
title_full Block by ruthenium red of the ryanodine-activated calcium release channel of skeletal muscle
title_fullStr Block by ruthenium red of the ryanodine-activated calcium release channel of skeletal muscle
title_full_unstemmed Block by ruthenium red of the ryanodine-activated calcium release channel of skeletal muscle
title_short Block by ruthenium red of the ryanodine-activated calcium release channel of skeletal muscle
title_sort block by ruthenium red of the ryanodine-activated calcium release channel of skeletal muscle
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229184/
https://www.ncbi.nlm.nih.gov/pubmed/7510773