Cargando…

ATP alters current fluctuations of cystic fibrosis transmembrane conductance regulator: evidence for a three-state activation mechanism

The cystic fibrosis gene product cystic fibrosis transmembrane conductance regulator (CFTR) is a low conductance, cAMP-regulated Cl- channel. Removal of cytosolic ATP causes a cessation of cAMP-dependent kinase-phosphorylated CFTR channel activity that resumes upon ATP addition. (Anderson, M. P., H....

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1994
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229193/
https://www.ncbi.nlm.nih.gov/pubmed/7525859
_version_ 1782150071695966208
collection PubMed
description The cystic fibrosis gene product cystic fibrosis transmembrane conductance regulator (CFTR) is a low conductance, cAMP-regulated Cl- channel. Removal of cytosolic ATP causes a cessation of cAMP-dependent kinase-phosphorylated CFTR channel activity that resumes upon ATP addition. (Anderson, M. P., H. A. Berger, D. R. Rich, R. J. Gregory, A. E. Smith, and M. J. Welsh. 1991. Cell. 67:775-784). The aim of this study was to quantify possible effects of ATP on CFTR gating. We analyzed multichannel records since only 1 of 64 patches contained a single channel. ATP increased the channel open probability (Po) as a simple Michaelis-Menten function of concentration; the effect was half maximal at 24 microM, reached a maximum of 0.44, and had a Hill coefficient of 1.13. Since the maximum Po was not 1, the simplest description of the effect of ATP on CFTR gating is the noncooperative three-state mechanism of del Castillo and Katz (1957. Proceedings of the Royal Society of London. B. 146:369-381). We analyzed current fluctuations to quantify possible changes in CFTR gating. The power density spectra appeared to contain a single Lorentzian in the range of 0.096-31 Hz. Analysis of the corner frequency (fc) of this Lorentzian revealed that ATP increased 2 pi fc as a Michaelis-Menten function with a Hill coefficient of 1.08, and it provided estimates of the ATP dissociation constant (44 tau open (154 ms), and the ATP-sensitive tau close [(185 ms) (44 microM/[ATP] + 1)]. These results suggest that the binding reaction is rapid compared to the opening and closing rates. Assuming that there is a single set of closed-to-open transitions, it is possible to verify the outcome of fluctuation analysis by comparing fluctuation-derived estimates of Po with measures of Po from current records. The two values were nearly identical. Thus, noise analysis provides a quantitative description of the effect of ATP on CFTR opening. The noncooperative three-state model should serve as a basis to understand possible alterations in CFTR gating resulting from regulators or point mutations.
format Text
id pubmed-2229193
institution National Center for Biotechnology Information
language English
publishDate 1994
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22291932008-04-23 ATP alters current fluctuations of cystic fibrosis transmembrane conductance regulator: evidence for a three-state activation mechanism J Gen Physiol Articles The cystic fibrosis gene product cystic fibrosis transmembrane conductance regulator (CFTR) is a low conductance, cAMP-regulated Cl- channel. Removal of cytosolic ATP causes a cessation of cAMP-dependent kinase-phosphorylated CFTR channel activity that resumes upon ATP addition. (Anderson, M. P., H. A. Berger, D. R. Rich, R. J. Gregory, A. E. Smith, and M. J. Welsh. 1991. Cell. 67:775-784). The aim of this study was to quantify possible effects of ATP on CFTR gating. We analyzed multichannel records since only 1 of 64 patches contained a single channel. ATP increased the channel open probability (Po) as a simple Michaelis-Menten function of concentration; the effect was half maximal at 24 microM, reached a maximum of 0.44, and had a Hill coefficient of 1.13. Since the maximum Po was not 1, the simplest description of the effect of ATP on CFTR gating is the noncooperative three-state mechanism of del Castillo and Katz (1957. Proceedings of the Royal Society of London. B. 146:369-381). We analyzed current fluctuations to quantify possible changes in CFTR gating. The power density spectra appeared to contain a single Lorentzian in the range of 0.096-31 Hz. Analysis of the corner frequency (fc) of this Lorentzian revealed that ATP increased 2 pi fc as a Michaelis-Menten function with a Hill coefficient of 1.08, and it provided estimates of the ATP dissociation constant (44 tau open (154 ms), and the ATP-sensitive tau close [(185 ms) (44 microM/[ATP] + 1)]. These results suggest that the binding reaction is rapid compared to the opening and closing rates. Assuming that there is a single set of closed-to-open transitions, it is possible to verify the outcome of fluctuation analysis by comparing fluctuation-derived estimates of Po with measures of Po from current records. The two values were nearly identical. Thus, noise analysis provides a quantitative description of the effect of ATP on CFTR opening. The noncooperative three-state model should serve as a basis to understand possible alterations in CFTR gating resulting from regulators or point mutations. The Rockefeller University Press 1994-07-01 /pmc/articles/PMC2229193/ /pubmed/7525859 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
ATP alters current fluctuations of cystic fibrosis transmembrane conductance regulator: evidence for a three-state activation mechanism
title ATP alters current fluctuations of cystic fibrosis transmembrane conductance regulator: evidence for a three-state activation mechanism
title_full ATP alters current fluctuations of cystic fibrosis transmembrane conductance regulator: evidence for a three-state activation mechanism
title_fullStr ATP alters current fluctuations of cystic fibrosis transmembrane conductance regulator: evidence for a three-state activation mechanism
title_full_unstemmed ATP alters current fluctuations of cystic fibrosis transmembrane conductance regulator: evidence for a three-state activation mechanism
title_short ATP alters current fluctuations of cystic fibrosis transmembrane conductance regulator: evidence for a three-state activation mechanism
title_sort atp alters current fluctuations of cystic fibrosis transmembrane conductance regulator: evidence for a three-state activation mechanism
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229193/
https://www.ncbi.nlm.nih.gov/pubmed/7525859