Cargando…
Partial reactions of the Na,K-ATPase: determination of rate constants
Experiments were designed to characterize several partial reactions of the Na,K-ATPase and to demonstrate that a model can be defined that reproduces most of the transport features of the pump with a single set of kientic parameters. We used the fluorescence label 5- iodoacetamidofluorescein, which...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1994
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229205/ https://www.ncbi.nlm.nih.gov/pubmed/7807047 |
_version_ | 1782150074811285504 |
---|---|
collection | PubMed |
description | Experiments were designed to characterize several partial reactions of the Na,K-ATPase and to demonstrate that a model can be defined that reproduces most of the transport features of the pump with a single set of kientic parameters. We used the fluorescence label 5- iodoacetamidofluorescein, which is thought to be sensitive to conformational changes, and the styryl dye RH 421, which can be applied to detect ion-binding and -release reactions. In addition transient electric currents were measured, which are associated mainly with the E1-->E2 conformational transition. Numerical simulations were performed on the basis of a reaction model, that has been developed from the Post- Albers cycle. Analysis of the experimental data allows the determination of several rate constants of the pump cycle. Our conclusions may be summarized as follows: (a) binding of one Na+ ion at the cytoplasmic face is electrogenic. This Na+ ion is specifically bound to a neutral binding site with an affinity of 8 mM in the presence of 10 mM Mg2+. In the absence of divalent cations, the intrinsic binding affinity was found to be 0.7 mM. (b) The analysis of fluorescence experiments with the cardiotonic steroid strophanthidin indicates that the 5-iodoacetamidofluorescein label monitors the conformational transition (Na3)E1-P-->P-E2(Na2), which is accompanied by the release of one Na+ ion. 5-IAF does not respond to the release of the subsequent two Na+ ions, which can be monitored by the RH 421 dye. These experiments indicate further that the conformational transition E1P-->P-E2 is the rate limiting process of the Na+ translocation. The corresponding rate constant was determined to be 22 s-1 at 20 degrees C. From competition experiments with cardiotonic steroids, we estimated that the remaining 2 Na+ ions are released subsequently with a rate constant of at least 5,000 s-1 from their negatively charged binding sites. (c) Comparing the fluorescence experiments with electric current transients, which were performed at various Na concentrations in the absence and presence of strophanthidin, we found that the transition (Na3).E1-P-->P-E2.(Na2) is the major charge translocating step in the reaction sequence Na3.E1-->(Na3).E1-P-->P-E2.(Na2)-->P-E2. The subsequent release of 2 Na+ ions contributed less than 25% to the total electric current transient. (d) The well known antagonism between cardiotonic steroids and K+ binding can be explained by a kinetic model. A quantitative description has been obtained under the assumption that these inhibitors bind only to the states P-E2(Na2) and P-E2(K2).(ABSTRACT TRUNCATED AT 400 WORDS) |
format | Text |
id | pubmed-2229205 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1994 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22292052008-04-23 Partial reactions of the Na,K-ATPase: determination of rate constants J Gen Physiol Articles Experiments were designed to characterize several partial reactions of the Na,K-ATPase and to demonstrate that a model can be defined that reproduces most of the transport features of the pump with a single set of kientic parameters. We used the fluorescence label 5- iodoacetamidofluorescein, which is thought to be sensitive to conformational changes, and the styryl dye RH 421, which can be applied to detect ion-binding and -release reactions. In addition transient electric currents were measured, which are associated mainly with the E1-->E2 conformational transition. Numerical simulations were performed on the basis of a reaction model, that has been developed from the Post- Albers cycle. Analysis of the experimental data allows the determination of several rate constants of the pump cycle. Our conclusions may be summarized as follows: (a) binding of one Na+ ion at the cytoplasmic face is electrogenic. This Na+ ion is specifically bound to a neutral binding site with an affinity of 8 mM in the presence of 10 mM Mg2+. In the absence of divalent cations, the intrinsic binding affinity was found to be 0.7 mM. (b) The analysis of fluorescence experiments with the cardiotonic steroid strophanthidin indicates that the 5-iodoacetamidofluorescein label monitors the conformational transition (Na3)E1-P-->P-E2(Na2), which is accompanied by the release of one Na+ ion. 5-IAF does not respond to the release of the subsequent two Na+ ions, which can be monitored by the RH 421 dye. These experiments indicate further that the conformational transition E1P-->P-E2 is the rate limiting process of the Na+ translocation. The corresponding rate constant was determined to be 22 s-1 at 20 degrees C. From competition experiments with cardiotonic steroids, we estimated that the remaining 2 Na+ ions are released subsequently with a rate constant of at least 5,000 s-1 from their negatively charged binding sites. (c) Comparing the fluorescence experiments with electric current transients, which were performed at various Na concentrations in the absence and presence of strophanthidin, we found that the transition (Na3).E1-P-->P-E2.(Na2) is the major charge translocating step in the reaction sequence Na3.E1-->(Na3).E1-P-->P-E2.(Na2)-->P-E2. The subsequent release of 2 Na+ ions contributed less than 25% to the total electric current transient. (d) The well known antagonism between cardiotonic steroids and K+ binding can be explained by a kinetic model. A quantitative description has been obtained under the assumption that these inhibitors bind only to the states P-E2(Na2) and P-E2(K2).(ABSTRACT TRUNCATED AT 400 WORDS) The Rockefeller University Press 1994-08-01 /pmc/articles/PMC2229205/ /pubmed/7807047 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Partial reactions of the Na,K-ATPase: determination of rate constants |
title | Partial reactions of the Na,K-ATPase: determination of rate constants |
title_full | Partial reactions of the Na,K-ATPase: determination of rate constants |
title_fullStr | Partial reactions of the Na,K-ATPase: determination of rate constants |
title_full_unstemmed | Partial reactions of the Na,K-ATPase: determination of rate constants |
title_short | Partial reactions of the Na,K-ATPase: determination of rate constants |
title_sort | partial reactions of the na,k-atpase: determination of rate constants |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229205/ https://www.ncbi.nlm.nih.gov/pubmed/7807047 |