Cargando…

Modulation of potassium channel gating by external divalent cations

We have examined the actions of Zn2+ ions on Shaker K channels. We found that low (100 microM) concentrations of Zn2+ produced a substantial (approximately three-fold) slowing of the kinetics of macroscopic activation and inactivation. Channel deactivation was much less affected. These results were...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1994
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229231/
https://www.ncbi.nlm.nih.gov/pubmed/7836936
_version_ 1782150079280316416
collection PubMed
description We have examined the actions of Zn2+ ions on Shaker K channels. We found that low (100 microM) concentrations of Zn2+ produced a substantial (approximately three-fold) slowing of the kinetics of macroscopic activation and inactivation. Channel deactivation was much less affected. These results were obtained in the presence of 5 mM Mg2+ and 4 mM Ca2+ in the external solution and so are unlikely to be due to modification of membrane surface charges. Furthermore, the action of 100 microM Zn2+ on activation was equivalent to a 70-mV reduction of a negative surface potential whereas the effects on deactivation would require a 15-mV increase in surface potential. External H+ ions reduced the Zn-induced slowing of macroscopic activation with an apparent pK of 7.3. Treatment of Shaker K channels with the amino group reagent, trinitrobenzene sulfonic acid (TNBS), substantially reduced the effects of Zn2+. All these results are qualitatively similar to the actions of Zn2+ on squid K channels, indicating that the binding site may be a common motif in potassium channels. Studies of single Shaker channel properties showed that Zn2+ ions had little or no effect on the open channel current level or on the open channel lifetime. Rather, Zn2+ substantially delayed the time to first channel opening. Thus, K channels appear to contain a site to which divalent cations bind and in so doing act to slow one or more of the rate constants controlling transitions among closed conformational states of the channel.
format Text
id pubmed-2229231
institution National Center for Biotechnology Information
language English
publishDate 1994
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22292312008-04-23 Modulation of potassium channel gating by external divalent cations J Gen Physiol Articles We have examined the actions of Zn2+ ions on Shaker K channels. We found that low (100 microM) concentrations of Zn2+ produced a substantial (approximately three-fold) slowing of the kinetics of macroscopic activation and inactivation. Channel deactivation was much less affected. These results were obtained in the presence of 5 mM Mg2+ and 4 mM Ca2+ in the external solution and so are unlikely to be due to modification of membrane surface charges. Furthermore, the action of 100 microM Zn2+ on activation was equivalent to a 70-mV reduction of a negative surface potential whereas the effects on deactivation would require a 15-mV increase in surface potential. External H+ ions reduced the Zn-induced slowing of macroscopic activation with an apparent pK of 7.3. Treatment of Shaker K channels with the amino group reagent, trinitrobenzene sulfonic acid (TNBS), substantially reduced the effects of Zn2+. All these results are qualitatively similar to the actions of Zn2+ on squid K channels, indicating that the binding site may be a common motif in potassium channels. Studies of single Shaker channel properties showed that Zn2+ ions had little or no effect on the open channel current level or on the open channel lifetime. Rather, Zn2+ substantially delayed the time to first channel opening. Thus, K channels appear to contain a site to which divalent cations bind and in so doing act to slow one or more of the rate constants controlling transitions among closed conformational states of the channel. The Rockefeller University Press 1994-10-01 /pmc/articles/PMC2229231/ /pubmed/7836936 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Modulation of potassium channel gating by external divalent cations
title Modulation of potassium channel gating by external divalent cations
title_full Modulation of potassium channel gating by external divalent cations
title_fullStr Modulation of potassium channel gating by external divalent cations
title_full_unstemmed Modulation of potassium channel gating by external divalent cations
title_short Modulation of potassium channel gating by external divalent cations
title_sort modulation of potassium channel gating by external divalent cations
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229231/
https://www.ncbi.nlm.nih.gov/pubmed/7836936