Cargando…

Inositol (1,4,5)-trisphosphate (InsP3)-gated Ca channels from cerebellum: conduction properties for divalent cations and regulation by intraluminal calcium

The conduction properties of inositol (1,4,5)-trisphosphate (InsP3)- gated calcium (Ca) channels (InsP3R) from canine cerebellum for divalent cations and the regulation of the channels by intraluminal Ca were studied using channels reconstituted into planar lipid bilayers. Analysis of single-channel...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1994
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229238/
https://www.ncbi.nlm.nih.gov/pubmed/7876825
_version_ 1782150081143635968
collection PubMed
description The conduction properties of inositol (1,4,5)-trisphosphate (InsP3)- gated calcium (Ca) channels (InsP3R) from canine cerebellum for divalent cations and the regulation of the channels by intraluminal Ca were studied using channels reconstituted into planar lipid bilayers. Analysis of single-channel recordings performed with different divalent cations present at 55 mM on the trans (intraluminal) side of the membrane revealed that the current amplitude at 0 mV and the single- channel slope conductance fell in the sequence: Ba (2.2 pA, 85 pS) > Sr (2.0 pA, 77 pS) > Ca (1.4 pA, 53 pS) > Mg (1.1 pA, 42 pS). The mean open time of the InsP3R recorded with Ca (2.9 ms) was significantly shorter than with other divalent cations (approximately 5.5 ms). The "anomalous mole fraction effect" was not observed in mixtures of divalent cations (Mg and Ba), suggesting that these channels are single- ion pores. Measurements of InsP3R activity at different intraluminal Ca levels demonstrated that Ca in the submillimolar range did not potentiate channel activity, and that very high levels of intraluminal Ca (> or = 10 mM) decreased channel open probability 5-10-fold. When InsP3R were measured with Ba as a current carrier in the presence of 110 mM cis potassium, a PBa/PK of 6.3 was estimated from the extrapolated value for the reversal potential. When the unitary current through the InsP3R at 0 mV was measured as a function of the permeant ion (Ba) concentration, the half-maximal current occurred at 10 mM trans Ba. The following conclusions are drawn from these data: (a) the conduction properties of InsP3R are similar to the properties of the ryanodine receptor, another intracellular Ca channel, and differ dramatically from the properties of voltage-gated Ca channels of the plasma membrane. (b) The estimated size of the Ca current through the InsP3R under physiological conditions is 0.5 pA, approximately four times less than the Ca current through the ryanodine receptor. (c) The potentiation of InsP3R by intraluminal Ca in the submillimolar range remains controversial. (d) A quantitative model that explains the inhibitory effects of high trans Ca on InsP3R activity was developed and the kinetic parameters of InsP3R gating were determined.
format Text
id pubmed-2229238
institution National Center for Biotechnology Information
language English
publishDate 1994
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22292382008-04-23 Inositol (1,4,5)-trisphosphate (InsP3)-gated Ca channels from cerebellum: conduction properties for divalent cations and regulation by intraluminal calcium J Gen Physiol Articles The conduction properties of inositol (1,4,5)-trisphosphate (InsP3)- gated calcium (Ca) channels (InsP3R) from canine cerebellum for divalent cations and the regulation of the channels by intraluminal Ca were studied using channels reconstituted into planar lipid bilayers. Analysis of single-channel recordings performed with different divalent cations present at 55 mM on the trans (intraluminal) side of the membrane revealed that the current amplitude at 0 mV and the single- channel slope conductance fell in the sequence: Ba (2.2 pA, 85 pS) > Sr (2.0 pA, 77 pS) > Ca (1.4 pA, 53 pS) > Mg (1.1 pA, 42 pS). The mean open time of the InsP3R recorded with Ca (2.9 ms) was significantly shorter than with other divalent cations (approximately 5.5 ms). The "anomalous mole fraction effect" was not observed in mixtures of divalent cations (Mg and Ba), suggesting that these channels are single- ion pores. Measurements of InsP3R activity at different intraluminal Ca levels demonstrated that Ca in the submillimolar range did not potentiate channel activity, and that very high levels of intraluminal Ca (> or = 10 mM) decreased channel open probability 5-10-fold. When InsP3R were measured with Ba as a current carrier in the presence of 110 mM cis potassium, a PBa/PK of 6.3 was estimated from the extrapolated value for the reversal potential. When the unitary current through the InsP3R at 0 mV was measured as a function of the permeant ion (Ba) concentration, the half-maximal current occurred at 10 mM trans Ba. The following conclusions are drawn from these data: (a) the conduction properties of InsP3R are similar to the properties of the ryanodine receptor, another intracellular Ca channel, and differ dramatically from the properties of voltage-gated Ca channels of the plasma membrane. (b) The estimated size of the Ca current through the InsP3R under physiological conditions is 0.5 pA, approximately four times less than the Ca current through the ryanodine receptor. (c) The potentiation of InsP3R by intraluminal Ca in the submillimolar range remains controversial. (d) A quantitative model that explains the inhibitory effects of high trans Ca on InsP3R activity was developed and the kinetic parameters of InsP3R gating were determined. The Rockefeller University Press 1994-11-01 /pmc/articles/PMC2229238/ /pubmed/7876825 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Inositol (1,4,5)-trisphosphate (InsP3)-gated Ca channels from cerebellum: conduction properties for divalent cations and regulation by intraluminal calcium
title Inositol (1,4,5)-trisphosphate (InsP3)-gated Ca channels from cerebellum: conduction properties for divalent cations and regulation by intraluminal calcium
title_full Inositol (1,4,5)-trisphosphate (InsP3)-gated Ca channels from cerebellum: conduction properties for divalent cations and regulation by intraluminal calcium
title_fullStr Inositol (1,4,5)-trisphosphate (InsP3)-gated Ca channels from cerebellum: conduction properties for divalent cations and regulation by intraluminal calcium
title_full_unstemmed Inositol (1,4,5)-trisphosphate (InsP3)-gated Ca channels from cerebellum: conduction properties for divalent cations and regulation by intraluminal calcium
title_short Inositol (1,4,5)-trisphosphate (InsP3)-gated Ca channels from cerebellum: conduction properties for divalent cations and regulation by intraluminal calcium
title_sort inositol (1,4,5)-trisphosphate (insp3)-gated ca channels from cerebellum: conduction properties for divalent cations and regulation by intraluminal calcium
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229238/
https://www.ncbi.nlm.nih.gov/pubmed/7876825