Cargando…

The mammalian Na+/H+ antiporters NHE-1, NHE-2, and NHE-3 are electroneutral and voltage independent, but can couple to an H+ conductance

Na+/H+ exchange in vertebrates is thought to be electroneutral and insensitive to the membrane voltage. This basic concept has been challenged by recent reports of antiport-associated currents in the turtle colon epithelium (Post and Dawson, 1992, 1994). To determine the electrogenicity of mammalian...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1995
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229254/
https://www.ncbi.nlm.nih.gov/pubmed/7494140
_version_ 1782150084945772544
collection PubMed
description Na+/H+ exchange in vertebrates is thought to be electroneutral and insensitive to the membrane voltage. This basic concept has been challenged by recent reports of antiport-associated currents in the turtle colon epithelium (Post and Dawson, 1992, 1994). To determine the electrogenicity of mammalian antiporters, we used the whole-cell patch clamp technique combined with microfluorimetric measurements of intracellular pH (pHi). In murine macrophages, which were found by RT- PCR to express the NHE-1 isoform of the antiporter, reverse (intracellular Na(+)-driven) Na+/H+ exchange caused a cytosolic acidification and activated an outward current, whereas forward (extracellular Na(+)-driven) exchange produced a cytosolic alkalinization and reduced a basal outward current. The currents mirrored the changes in pHi, were strictly dependent on the presence of a Na+ gradient and were reversibly blocked by amiloride. However, the currents were seemingly not carried by the Na+/H+ exchanger itself, but were instead due to a shift in the voltage dependence of a preexisting H+ conductance. This was supported by measurements of the reversal potential (Erev) of tail currents, which identified H+ (equivalents) as the charge carrier. During Na+/H+ exchange, Erev changed along with the measured changes in pHi (by 60-69 mV/pH). Moreover, the current and Na+/H+ exchange could be dissociated. Zn2+, which inhibits the H+ conductance, reversibly blocked the currents without altering Na+/H+ exchange. In Chinese hamster ovary (CHO) cells, which lack the H+ conductance, Na+/H+ exchange produced pHi changes that were not accompanied by transmembrane currents. Similar results were obtained in CHO cells transfected with either the NHE-1, NHE-2, or NHE-3 isoforms of the antiporter, indicating that exchange through these isoforms is electroneutral. In all the isoforms tested, the amplitude and time- course of the antiport-induced pHi changes were independent of the holding voltage. We conclude that mammalian NHE-1, NHE-2, and NHE-3 are electroneutral and voltage independent. In cells endowed with a pH- sensitive H+ conductance, such as macrophages, activation of Na(+)-H+ exchange can modulate a transmembrane H+ current. The currents reported in turtle colon might be due to a similar "cross-talk" between the antiporter and a H+ conductance.
format Text
id pubmed-2229254
institution National Center for Biotechnology Information
language English
publishDate 1995
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22292542008-04-23 The mammalian Na+/H+ antiporters NHE-1, NHE-2, and NHE-3 are electroneutral and voltage independent, but can couple to an H+ conductance J Gen Physiol Articles Na+/H+ exchange in vertebrates is thought to be electroneutral and insensitive to the membrane voltage. This basic concept has been challenged by recent reports of antiport-associated currents in the turtle colon epithelium (Post and Dawson, 1992, 1994). To determine the electrogenicity of mammalian antiporters, we used the whole-cell patch clamp technique combined with microfluorimetric measurements of intracellular pH (pHi). In murine macrophages, which were found by RT- PCR to express the NHE-1 isoform of the antiporter, reverse (intracellular Na(+)-driven) Na+/H+ exchange caused a cytosolic acidification and activated an outward current, whereas forward (extracellular Na(+)-driven) exchange produced a cytosolic alkalinization and reduced a basal outward current. The currents mirrored the changes in pHi, were strictly dependent on the presence of a Na+ gradient and were reversibly blocked by amiloride. However, the currents were seemingly not carried by the Na+/H+ exchanger itself, but were instead due to a shift in the voltage dependence of a preexisting H+ conductance. This was supported by measurements of the reversal potential (Erev) of tail currents, which identified H+ (equivalents) as the charge carrier. During Na+/H+ exchange, Erev changed along with the measured changes in pHi (by 60-69 mV/pH). Moreover, the current and Na+/H+ exchange could be dissociated. Zn2+, which inhibits the H+ conductance, reversibly blocked the currents without altering Na+/H+ exchange. In Chinese hamster ovary (CHO) cells, which lack the H+ conductance, Na+/H+ exchange produced pHi changes that were not accompanied by transmembrane currents. Similar results were obtained in CHO cells transfected with either the NHE-1, NHE-2, or NHE-3 isoforms of the antiporter, indicating that exchange through these isoforms is electroneutral. In all the isoforms tested, the amplitude and time- course of the antiport-induced pHi changes were independent of the holding voltage. We conclude that mammalian NHE-1, NHE-2, and NHE-3 are electroneutral and voltage independent. In cells endowed with a pH- sensitive H+ conductance, such as macrophages, activation of Na(+)-H+ exchange can modulate a transmembrane H+ current. The currents reported in turtle colon might be due to a similar "cross-talk" between the antiporter and a H+ conductance. The Rockefeller University Press 1995-07-01 /pmc/articles/PMC2229254/ /pubmed/7494140 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
The mammalian Na+/H+ antiporters NHE-1, NHE-2, and NHE-3 are electroneutral and voltage independent, but can couple to an H+ conductance
title The mammalian Na+/H+ antiporters NHE-1, NHE-2, and NHE-3 are electroneutral and voltage independent, but can couple to an H+ conductance
title_full The mammalian Na+/H+ antiporters NHE-1, NHE-2, and NHE-3 are electroneutral and voltage independent, but can couple to an H+ conductance
title_fullStr The mammalian Na+/H+ antiporters NHE-1, NHE-2, and NHE-3 are electroneutral and voltage independent, but can couple to an H+ conductance
title_full_unstemmed The mammalian Na+/H+ antiporters NHE-1, NHE-2, and NHE-3 are electroneutral and voltage independent, but can couple to an H+ conductance
title_short The mammalian Na+/H+ antiporters NHE-1, NHE-2, and NHE-3 are electroneutral and voltage independent, but can couple to an H+ conductance
title_sort mammalian na+/h+ antiporters nhe-1, nhe-2, and nhe-3 are electroneutral and voltage independent, but can couple to an h+ conductance
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229254/
https://www.ncbi.nlm.nih.gov/pubmed/7494140