Cargando…
Ca2+ influx pathways mediated by swelling or stores depletion in mouse thymocytes
We used fura-2 video imaging to characterize two Ca2+ influx pathways in mouse thymocytes. Most thymocytes (77%) superfused with hypoosmotic media (60% of isoosmotic) exhibited a sharp, transient rise in the concentration of intracellular free Ca2+ ([Ca2+]i). After a delay of approximately 70 s, the...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1995
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229265/ https://www.ncbi.nlm.nih.gov/pubmed/8786341 |
_version_ | 1782150087481229312 |
---|---|
collection | PubMed |
description | We used fura-2 video imaging to characterize two Ca2+ influx pathways in mouse thymocytes. Most thymocytes (77%) superfused with hypoosmotic media (60% of isoosmotic) exhibited a sharp, transient rise in the concentration of intracellular free Ca2+ ([Ca2+]i). After a delay of approximately 70 s, these swelling-activated [Ca2+]i (SWAC) transients reached approximately 650 nM from resting levels of approximately 100 nM and declined from a time constant of 20 s. Peak [Ca2+]i during transients correlated with maximum volume during swelling. Regulatory volume decrease (RVD) was enhanced in thymocytes exhibiting SWAC transients. Three lines of evidence indicate that Ca2+ influx, and not the release of Ca2+ from intracellular stores, underlies SWAC transients in thymocytes. First, thymocytes swollen in Ca2+-free media failed to respond. Second, Gd3+ and La3+ inhibited SWAC influx with Kd's of 3.8 and 2.4 microM, respectively. Finally, the depletion of Ca2+ stores with thapsigargin (TG) before swelling did not inhibit the generation, nor decrease the amplitude, of SWAC transients. Cell phenotyping demonstrated that SWAC transients are primarily associated with immature CD4-CD8- and CD4+CD8+ thymocytes. Mature peripheral lymphocytes (mouse or human) did not exhibit SWAC transients. SWAC influx could be distinguished from the calcium release-activated Ca2+ (CRAC) influx pathway stimulated by store depletion with TG. In TG- treated thymocytes, [Ca2+]i rose steadily for approximately 100 s, peaked at approximately 900 nM, and then declined slowly. Simultaneous activation of both pathways produced an additive [Ca2+]i profile. Gd3+ and La3+ blocked Ca2+ entry during CRAC activation more potently (Kd's of 28 and 58 nM, respectively) than Ca2+ influx during SWAC transients. SWAC transients could be elicited in the presence of 1 microM Gd3+, after the complete inhibition of CRAC influx. Finally, whereas SWAC transients were principally restricted to immature thymocytes. TG stimulated the CRAC influx pathway in all four thymic CD4/CD8 subsets and in mature T cells. We conclude that SWAC and CRAC represent separate pathways for Ca2+ entry in thymocytes. |
format | Text |
id | pubmed-2229265 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1995 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22292652008-04-23 Ca2+ influx pathways mediated by swelling or stores depletion in mouse thymocytes J Gen Physiol Articles We used fura-2 video imaging to characterize two Ca2+ influx pathways in mouse thymocytes. Most thymocytes (77%) superfused with hypoosmotic media (60% of isoosmotic) exhibited a sharp, transient rise in the concentration of intracellular free Ca2+ ([Ca2+]i). After a delay of approximately 70 s, these swelling-activated [Ca2+]i (SWAC) transients reached approximately 650 nM from resting levels of approximately 100 nM and declined from a time constant of 20 s. Peak [Ca2+]i during transients correlated with maximum volume during swelling. Regulatory volume decrease (RVD) was enhanced in thymocytes exhibiting SWAC transients. Three lines of evidence indicate that Ca2+ influx, and not the release of Ca2+ from intracellular stores, underlies SWAC transients in thymocytes. First, thymocytes swollen in Ca2+-free media failed to respond. Second, Gd3+ and La3+ inhibited SWAC influx with Kd's of 3.8 and 2.4 microM, respectively. Finally, the depletion of Ca2+ stores with thapsigargin (TG) before swelling did not inhibit the generation, nor decrease the amplitude, of SWAC transients. Cell phenotyping demonstrated that SWAC transients are primarily associated with immature CD4-CD8- and CD4+CD8+ thymocytes. Mature peripheral lymphocytes (mouse or human) did not exhibit SWAC transients. SWAC influx could be distinguished from the calcium release-activated Ca2+ (CRAC) influx pathway stimulated by store depletion with TG. In TG- treated thymocytes, [Ca2+]i rose steadily for approximately 100 s, peaked at approximately 900 nM, and then declined slowly. Simultaneous activation of both pathways produced an additive [Ca2+]i profile. Gd3+ and La3+ blocked Ca2+ entry during CRAC activation more potently (Kd's of 28 and 58 nM, respectively) than Ca2+ influx during SWAC transients. SWAC transients could be elicited in the presence of 1 microM Gd3+, after the complete inhibition of CRAC influx. Finally, whereas SWAC transients were principally restricted to immature thymocytes. TG stimulated the CRAC influx pathway in all four thymic CD4/CD8 subsets and in mature T cells. We conclude that SWAC and CRAC represent separate pathways for Ca2+ entry in thymocytes. The Rockefeller University Press 1995-09-01 /pmc/articles/PMC2229265/ /pubmed/8786341 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Ca2+ influx pathways mediated by swelling or stores depletion in mouse thymocytes |
title | Ca2+ influx pathways mediated by swelling or stores depletion in mouse thymocytes |
title_full | Ca2+ influx pathways mediated by swelling or stores depletion in mouse thymocytes |
title_fullStr | Ca2+ influx pathways mediated by swelling or stores depletion in mouse thymocytes |
title_full_unstemmed | Ca2+ influx pathways mediated by swelling or stores depletion in mouse thymocytes |
title_short | Ca2+ influx pathways mediated by swelling or stores depletion in mouse thymocytes |
title_sort | ca2+ influx pathways mediated by swelling or stores depletion in mouse thymocytes |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229265/ https://www.ncbi.nlm.nih.gov/pubmed/8786341 |