Cargando…

Effects of protein phosphatase and kinase inhibitors on the cardiac L- type Ca current suggest two sites are phosphorylated by protein kinase A and another protein kinase

We previously showed (Frace, A.M. and H.C. Hartzell. 1993. Journal of Physiology. 472:305-326) that internal perfusion of frog atrial myocytes with the nonselective protein phosphatase inhibitors microcystin or okadaic acid produced an increase in the L-type Ca current (ICa) and a decrease in the de...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1995
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229266/
https://www.ncbi.nlm.nih.gov/pubmed/8786340
_version_ 1782150087721353216
collection PubMed
description We previously showed (Frace, A.M. and H.C. Hartzell. 1993. Journal of Physiology. 472:305-326) that internal perfusion of frog atrial myocytes with the nonselective protein phosphatase inhibitors microcystin or okadaic acid produced an increase in the L-type Ca current (ICa) and a decrease in the delayed rectifier K current (IK). We hypothesized that microcystin revealed the activity of a protein kinase (PKX) that was basally active in the cardiac myocyte that could phosphorylate the Ca and K channels or regulators of the channels. The present studies were aimed at determining the nature of PKX and its phosphorylation target. The effect of internal perfusion with microcystin on ICa or IK was not attenuated by inhibitors of protein kinase A (PKA). However, the effect of microcystin on ICa was largely blocked by the nonselective protein kinase inhibitors staurosporine (10- 30 nM), K252a (250 nM), and H-7 (10 microM). Staurosporine and H-7 also decreased the stimulation of ICa by isoproterenol, but K252a was more selective and blocked the ability of microcystin to stimulate ICa without significantly reducing isoproterenol-stimulated current. Internal perfusion with selective inhibitors of protein kinase C (PKC), including the autoinhibitory pseudosubstrate PKC peptide (PKC(19-31)) and a myristoylated derivative of this peptide had no effect. External application of several PKC inhibitors had negative side effects that prevented their use as selective PKC inhibitors. Nevertheless, we conclude that PKX is not PKC. PKA and PKX phosphorylate sites with different sensitivities to the phosphatase inhibitors calyculin A and microcystin. In contrast to the results with ICa, the effect of microcystin on IK was not blocked by any of the kinase inhibitors tested, suggesting that the effect of microcystin on IK may not be mediated by a protein kinase but may be due to a direct effect of microcystin on the IK channel.
format Text
id pubmed-2229266
institution National Center for Biotechnology Information
language English
publishDate 1995
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22292662008-04-23 Effects of protein phosphatase and kinase inhibitors on the cardiac L- type Ca current suggest two sites are phosphorylated by protein kinase A and another protein kinase J Gen Physiol Articles We previously showed (Frace, A.M. and H.C. Hartzell. 1993. Journal of Physiology. 472:305-326) that internal perfusion of frog atrial myocytes with the nonselective protein phosphatase inhibitors microcystin or okadaic acid produced an increase in the L-type Ca current (ICa) and a decrease in the delayed rectifier K current (IK). We hypothesized that microcystin revealed the activity of a protein kinase (PKX) that was basally active in the cardiac myocyte that could phosphorylate the Ca and K channels or regulators of the channels. The present studies were aimed at determining the nature of PKX and its phosphorylation target. The effect of internal perfusion with microcystin on ICa or IK was not attenuated by inhibitors of protein kinase A (PKA). However, the effect of microcystin on ICa was largely blocked by the nonselective protein kinase inhibitors staurosporine (10- 30 nM), K252a (250 nM), and H-7 (10 microM). Staurosporine and H-7 also decreased the stimulation of ICa by isoproterenol, but K252a was more selective and blocked the ability of microcystin to stimulate ICa without significantly reducing isoproterenol-stimulated current. Internal perfusion with selective inhibitors of protein kinase C (PKC), including the autoinhibitory pseudosubstrate PKC peptide (PKC(19-31)) and a myristoylated derivative of this peptide had no effect. External application of several PKC inhibitors had negative side effects that prevented their use as selective PKC inhibitors. Nevertheless, we conclude that PKX is not PKC. PKA and PKX phosphorylate sites with different sensitivities to the phosphatase inhibitors calyculin A and microcystin. In contrast to the results with ICa, the effect of microcystin on IK was not blocked by any of the kinase inhibitors tested, suggesting that the effect of microcystin on IK may not be mediated by a protein kinase but may be due to a direct effect of microcystin on the IK channel. The Rockefeller University Press 1995-09-01 /pmc/articles/PMC2229266/ /pubmed/8786340 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Effects of protein phosphatase and kinase inhibitors on the cardiac L- type Ca current suggest two sites are phosphorylated by protein kinase A and another protein kinase
title Effects of protein phosphatase and kinase inhibitors on the cardiac L- type Ca current suggest two sites are phosphorylated by protein kinase A and another protein kinase
title_full Effects of protein phosphatase and kinase inhibitors on the cardiac L- type Ca current suggest two sites are phosphorylated by protein kinase A and another protein kinase
title_fullStr Effects of protein phosphatase and kinase inhibitors on the cardiac L- type Ca current suggest two sites are phosphorylated by protein kinase A and another protein kinase
title_full_unstemmed Effects of protein phosphatase and kinase inhibitors on the cardiac L- type Ca current suggest two sites are phosphorylated by protein kinase A and another protein kinase
title_short Effects of protein phosphatase and kinase inhibitors on the cardiac L- type Ca current suggest two sites are phosphorylated by protein kinase A and another protein kinase
title_sort effects of protein phosphatase and kinase inhibitors on the cardiac l- type ca current suggest two sites are phosphorylated by protein kinase a and another protein kinase
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229266/
https://www.ncbi.nlm.nih.gov/pubmed/8786340