Cargando…
Effect of sarcoplasmic reticulum calcium depletion on intramembranous charge movement in frog cut muscle fibers
Cut muscle fibers from Rana temporaria (sarcomere length, 3.3-3.5 microns; temperature, 13-16 degrees C) were mounted in a double Vaseline-gap chamber and equilibrated for at least an hour with an internal solution that contained 20 mM EGTA and phenol red and an external solution that contained pred...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1995
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229281/ https://www.ncbi.nlm.nih.gov/pubmed/8576702 |
_version_ | 1782150091261345792 |
---|---|
collection | PubMed |
description | Cut muscle fibers from Rana temporaria (sarcomere length, 3.3-3.5 microns; temperature, 13-16 degrees C) were mounted in a double Vaseline-gap chamber and equilibrated for at least an hour with an internal solution that contained 20 mM EGTA and phenol red and an external solution that contained predominantly TEA-gluconate; both solutions were nominally Ca-free. The increase in total myoplasmic concentration of Ca (delta[CaT]) produced by sarcoplasmic reticulum (SR) Ca release was estimated from the change in pH produced when the released Ca was complexed by EGTA (Pape, P.C., D.-S. Jong, and W.K. Chandler. 1995. Journal of General Physiology. 106:259-336). The resting value of SR Ca content, [CaSR]R (expressed as myoplasmic concentration), was taken to be equal to the value of delta[CaT] obtained during a step depolarization (usually to -50 to -40 mV) that was sufficiently long (200-750 ms) to release all of the readily releasable Ca from the SR. In ten fibers, the first depolarization gave [CaSR]R = 839-1,698 microM. Progressively smaller values were obtained with subsequent depolarizations until, after 30-40 depolarizations, the value of [CaSR]R had usually been reduced to < 10 microM. Measurements of intramembranous charge movement, Icm, showed that, as the value of [CaSR]R decreased, ON-OFF charge equality held and the amount of charge moved remained constant. ON Icm showed brief initial I beta components and prominent I gamma "humps", even after the value of [CaSR]R was < 10 microM. Although the amplitude of the hump component decreased during depletion, its duration increased in a manner that preserved the constancy of ON charge. In the depleted state, charge movement was steeply voltage dependent, with a mean value of 7.2 mV for the Boltzmann factor k. These and other results are not consistent with the idea that there is one type of charge, Q beta, and that I gamma is a movement of Q beta caused by SR Ca release, as proposed by Pizarro, Csernoch, Uribe, Rodriguez, and Rios (1991. Journal of General Physiology. 97:913-947). Rather, our results imply that Q beta and Q gamma represent either two distinct species of charge or two transitions with different properties of a single species of charge, and that SR Ca content or release or some related event alters the kinetics, but not the amount of Q gamma. Many of the properties of Q gamma, as well as the voltage dependence of the rate of SR Ca release for small depolarizations, are consistent with predictions from a simple model in which the voltage sensor for SR Ca release consists of four interacting charge movement particles. |
format | Text |
id | pubmed-2229281 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1995 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22292812008-04-23 Effect of sarcoplasmic reticulum calcium depletion on intramembranous charge movement in frog cut muscle fibers J Gen Physiol Articles Cut muscle fibers from Rana temporaria (sarcomere length, 3.3-3.5 microns; temperature, 13-16 degrees C) were mounted in a double Vaseline-gap chamber and equilibrated for at least an hour with an internal solution that contained 20 mM EGTA and phenol red and an external solution that contained predominantly TEA-gluconate; both solutions were nominally Ca-free. The increase in total myoplasmic concentration of Ca (delta[CaT]) produced by sarcoplasmic reticulum (SR) Ca release was estimated from the change in pH produced when the released Ca was complexed by EGTA (Pape, P.C., D.-S. Jong, and W.K. Chandler. 1995. Journal of General Physiology. 106:259-336). The resting value of SR Ca content, [CaSR]R (expressed as myoplasmic concentration), was taken to be equal to the value of delta[CaT] obtained during a step depolarization (usually to -50 to -40 mV) that was sufficiently long (200-750 ms) to release all of the readily releasable Ca from the SR. In ten fibers, the first depolarization gave [CaSR]R = 839-1,698 microM. Progressively smaller values were obtained with subsequent depolarizations until, after 30-40 depolarizations, the value of [CaSR]R had usually been reduced to < 10 microM. Measurements of intramembranous charge movement, Icm, showed that, as the value of [CaSR]R decreased, ON-OFF charge equality held and the amount of charge moved remained constant. ON Icm showed brief initial I beta components and prominent I gamma "humps", even after the value of [CaSR]R was < 10 microM. Although the amplitude of the hump component decreased during depletion, its duration increased in a manner that preserved the constancy of ON charge. In the depleted state, charge movement was steeply voltage dependent, with a mean value of 7.2 mV for the Boltzmann factor k. These and other results are not consistent with the idea that there is one type of charge, Q beta, and that I gamma is a movement of Q beta caused by SR Ca release, as proposed by Pizarro, Csernoch, Uribe, Rodriguez, and Rios (1991. Journal of General Physiology. 97:913-947). Rather, our results imply that Q beta and Q gamma represent either two distinct species of charge or two transitions with different properties of a single species of charge, and that SR Ca content or release or some related event alters the kinetics, but not the amount of Q gamma. Many of the properties of Q gamma, as well as the voltage dependence of the rate of SR Ca release for small depolarizations, are consistent with predictions from a simple model in which the voltage sensor for SR Ca release consists of four interacting charge movement particles. The Rockefeller University Press 1995-10-01 /pmc/articles/PMC2229281/ /pubmed/8576702 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Effect of sarcoplasmic reticulum calcium depletion on intramembranous charge movement in frog cut muscle fibers |
title | Effect of sarcoplasmic reticulum calcium depletion on intramembranous charge movement in frog cut muscle fibers |
title_full | Effect of sarcoplasmic reticulum calcium depletion on intramembranous charge movement in frog cut muscle fibers |
title_fullStr | Effect of sarcoplasmic reticulum calcium depletion on intramembranous charge movement in frog cut muscle fibers |
title_full_unstemmed | Effect of sarcoplasmic reticulum calcium depletion on intramembranous charge movement in frog cut muscle fibers |
title_short | Effect of sarcoplasmic reticulum calcium depletion on intramembranous charge movement in frog cut muscle fibers |
title_sort | effect of sarcoplasmic reticulum calcium depletion on intramembranous charge movement in frog cut muscle fibers |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229281/ https://www.ncbi.nlm.nih.gov/pubmed/8576702 |