Cargando…

Transfer of twelve charges is needed to open skeletal muscle Na+ channels

Voltage-dependent Na+ channels are thought to sense membrane potential with fixed charges located within the membrane's electrical field. Measurement of open probability (Po) as a function of membrane potential gives a quantitative indication of the number of such charges that move through the...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1995
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229305/
https://www.ncbi.nlm.nih.gov/pubmed/8786350
_version_ 1782150097079894016
collection PubMed
description Voltage-dependent Na+ channels are thought to sense membrane potential with fixed charges located within the membrane's electrical field. Measurement of open probability (Po) as a function of membrane potential gives a quantitative indication of the number of such charges that move through the field in opening the channel. We have used single- channel recording to measure skeletal muscle Na+ channel open probability at its most negative extreme, where channels may open as seldom as once per minute. To prevent fast inactivation from masking the voltage dependence of Po, we have generated a clone of the rat skeletal muscle Na+ channel that is lacking in fast inactivation (IFM1303QQQ). Using this mutant channel expressed in Xenopus oocytes, and the extra resolution afforded by single-channel analysis, we have extended the resolution of the hyperpolarized tail of the Po curve by four orders of magnitude. We show that previous measurements, which indicated a minimum of six effective gating charges, may have been made in a range of Po values that had not yet arrived at its limiting slope. In our preparation, a minimum of 12 charges must function in the activation gating of the channel. Our results will require reevaluation of kinetic models based on six charges, and they have major implications for the interpretation of S4 mutagenesis studies and structure/function models of the Na+ channel.
format Text
id pubmed-2229305
institution National Center for Biotechnology Information
language English
publishDate 1995
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22293052008-04-23 Transfer of twelve charges is needed to open skeletal muscle Na+ channels J Gen Physiol Articles Voltage-dependent Na+ channels are thought to sense membrane potential with fixed charges located within the membrane's electrical field. Measurement of open probability (Po) as a function of membrane potential gives a quantitative indication of the number of such charges that move through the field in opening the channel. We have used single- channel recording to measure skeletal muscle Na+ channel open probability at its most negative extreme, where channels may open as seldom as once per minute. To prevent fast inactivation from masking the voltage dependence of Po, we have generated a clone of the rat skeletal muscle Na+ channel that is lacking in fast inactivation (IFM1303QQQ). Using this mutant channel expressed in Xenopus oocytes, and the extra resolution afforded by single-channel analysis, we have extended the resolution of the hyperpolarized tail of the Po curve by four orders of magnitude. We show that previous measurements, which indicated a minimum of six effective gating charges, may have been made in a range of Po values that had not yet arrived at its limiting slope. In our preparation, a minimum of 12 charges must function in the activation gating of the channel. Our results will require reevaluation of kinetic models based on six charges, and they have major implications for the interpretation of S4 mutagenesis studies and structure/function models of the Na+ channel. The Rockefeller University Press 1995-12-01 /pmc/articles/PMC2229305/ /pubmed/8786350 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Transfer of twelve charges is needed to open skeletal muscle Na+ channels
title Transfer of twelve charges is needed to open skeletal muscle Na+ channels
title_full Transfer of twelve charges is needed to open skeletal muscle Na+ channels
title_fullStr Transfer of twelve charges is needed to open skeletal muscle Na+ channels
title_full_unstemmed Transfer of twelve charges is needed to open skeletal muscle Na+ channels
title_short Transfer of twelve charges is needed to open skeletal muscle Na+ channels
title_sort transfer of twelve charges is needed to open skeletal muscle na+ channels
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229305/
https://www.ncbi.nlm.nih.gov/pubmed/8786350