Cargando…
Kinetics of bicarbonate transport in human red blood cell membranes at body temperature
We studied unidirectional [14C]HCO3- efflux from human resealed red cell ghosts with 1 mM acetazolamide under self-exchange conditions at pH = pH(i = o) 7.4-9.0 and 0-38 degrees C by means of the Millipore- Swinnex and continuous flow tube filtering techniques. 14CO2 loss from cells to efflux medium...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1996
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229339/ https://www.ncbi.nlm.nih.gov/pubmed/8972394 |
_version_ | 1782150105051168768 |
---|---|
collection | PubMed |
description | We studied unidirectional [14C]HCO3- efflux from human resealed red cell ghosts with 1 mM acetazolamide under self-exchange conditions at pH = pH(i = o) 7.4-9.0 and 0-38 degrees C by means of the Millipore- Swinnex and continuous flow tube filtering techniques. 14CO2 loss from cells to efflux medium and further to the atmosphere was insignificant. [14C]HCO3- efflux was determined at pH 7.8, 38 degrees C under symmetric variation of the HCO3- concentrations (C(i = o)), and asymmetric conditions: C(i) varied, C(o) constant, or C(o) varied, C(i) constant. MM-fit, Jeff = Jmaxeff x C x (C + K1/2)-1, used to describe the concentration dependence of Jeff,o when only C(o) varied, yields at C(i) = 50 mM: K1/2o = 3.8 mMJ, Jmaxeff.o = 20 nmol cm-2 s-1; at C(i) = 165 mM: K1/2o = 10 mM, Jmaxeff.o = 32 nmol cm-2 s-1. When C(i) varied, noncompetitive self inhibition by HCO3- binding (inhibitor constant K1) to an intracellular site was included (MS-fit). Under conditions of (a) symmetry: C(i = o) = 9-600 mM, K1/2s = 173 mM, K1 = 172 mM, and Jmaxeff,s = 120 nmol cm-2 s-1, (b) asymmetry: C(o) = 50 mM, K1/2i = 116 mM, K1 = 136 mM, and Jmaxeff,i = 92 nmol cm-2 s-1. All flux parameters accord with the ping-pong model for anion exchange. The data for C(i) < 200 mM also fit well to the MM equation, but K1/2 and Jmaxeff are different from the MS-fit and are inconsistent with the ping-pong model. Thus, self-inhibition (MS-fit) must be included even at low concentrations. As at 0 degree C, the system is asymmetric: 8-10 times more unloaded transport sites face inward than outward when C(i = o). Jeff,s was not mono-exponentially dependent on temperature at 0-38 degrees C, indicating that the transmembrane anion transport is controlled by several rate constants with different temperature dependencies. Jeff,s was not significantly affected by increasing pH(i = o) from 7.4 to 7.8, but it decreased by 50% when pH was raised to 9.0. |
format | Text |
id | pubmed-2229339 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1996 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22293392008-04-23 Kinetics of bicarbonate transport in human red blood cell membranes at body temperature J Gen Physiol Articles We studied unidirectional [14C]HCO3- efflux from human resealed red cell ghosts with 1 mM acetazolamide under self-exchange conditions at pH = pH(i = o) 7.4-9.0 and 0-38 degrees C by means of the Millipore- Swinnex and continuous flow tube filtering techniques. 14CO2 loss from cells to efflux medium and further to the atmosphere was insignificant. [14C]HCO3- efflux was determined at pH 7.8, 38 degrees C under symmetric variation of the HCO3- concentrations (C(i = o)), and asymmetric conditions: C(i) varied, C(o) constant, or C(o) varied, C(i) constant. MM-fit, Jeff = Jmaxeff x C x (C + K1/2)-1, used to describe the concentration dependence of Jeff,o when only C(o) varied, yields at C(i) = 50 mM: K1/2o = 3.8 mMJ, Jmaxeff.o = 20 nmol cm-2 s-1; at C(i) = 165 mM: K1/2o = 10 mM, Jmaxeff.o = 32 nmol cm-2 s-1. When C(i) varied, noncompetitive self inhibition by HCO3- binding (inhibitor constant K1) to an intracellular site was included (MS-fit). Under conditions of (a) symmetry: C(i = o) = 9-600 mM, K1/2s = 173 mM, K1 = 172 mM, and Jmaxeff,s = 120 nmol cm-2 s-1, (b) asymmetry: C(o) = 50 mM, K1/2i = 116 mM, K1 = 136 mM, and Jmaxeff,i = 92 nmol cm-2 s-1. All flux parameters accord with the ping-pong model for anion exchange. The data for C(i) < 200 mM also fit well to the MM equation, but K1/2 and Jmaxeff are different from the MS-fit and are inconsistent with the ping-pong model. Thus, self-inhibition (MS-fit) must be included even at low concentrations. As at 0 degree C, the system is asymmetric: 8-10 times more unloaded transport sites face inward than outward when C(i = o). Jeff,s was not mono-exponentially dependent on temperature at 0-38 degrees C, indicating that the transmembrane anion transport is controlled by several rate constants with different temperature dependencies. Jeff,s was not significantly affected by increasing pH(i = o) from 7.4 to 7.8, but it decreased by 50% when pH was raised to 9.0. The Rockefeller University Press 1996-12-01 /pmc/articles/PMC2229339/ /pubmed/8972394 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Kinetics of bicarbonate transport in human red blood cell membranes at body temperature |
title | Kinetics of bicarbonate transport in human red blood cell membranes at body temperature |
title_full | Kinetics of bicarbonate transport in human red blood cell membranes at body temperature |
title_fullStr | Kinetics of bicarbonate transport in human red blood cell membranes at body temperature |
title_full_unstemmed | Kinetics of bicarbonate transport in human red blood cell membranes at body temperature |
title_short | Kinetics of bicarbonate transport in human red blood cell membranes at body temperature |
title_sort | kinetics of bicarbonate transport in human red blood cell membranes at body temperature |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229339/ https://www.ncbi.nlm.nih.gov/pubmed/8972394 |