Cargando…
The Effects of HCl and CaCl(2) Injections on Intracellular Calcium and pH in Voltage-clamped Snail (Helix aspersa) Neurons
To investigate the mechanisms by which low intracellular pH influences calcium signaling, I have injected HCl, and in some experiments CaCl(2), into snail neurons while recording intracellular pH (pH(i)) and calcium concentration ([Ca(2+)](i)) with ion-sensitive microelectrodes. Unlike fluorescent i...
Autor principal: | |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2002
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229535/ https://www.ncbi.nlm.nih.gov/pubmed/12356857 http://dx.doi.org/10.1085/jgp.20028665 |
_version_ | 1782150151186415616 |
---|---|
author | Thomas, Roger C. |
author_facet | Thomas, Roger C. |
author_sort | Thomas, Roger C. |
collection | PubMed |
description | To investigate the mechanisms by which low intracellular pH influences calcium signaling, I have injected HCl, and in some experiments CaCl(2), into snail neurons while recording intracellular pH (pH(i)) and calcium concentration ([Ca(2+)](i)) with ion-sensitive microelectrodes. Unlike fluorescent indicators, these do not increase buffering. Slow injections of HCl (changing pH(i) by 0.1–0.2 pH units min(−1)) first decreased [Ca(2+)](i) while pH(i) was still close to normal, but then increased [Ca(2+)](i) when pH(i) fell below 6.8–7. As pH(i) recovered after such an injection, [Ca(2+)](i) started to fall but then increased transiently before returning to its preinjection level. Both the acid-induced decrease and the recovery-induced increase in [Ca(2+)](i) were abolished by cyclopiazonic acid, which empties calcium stores. Caffeine with or without ryanodine lowered [Ca(2+)](i) and converted the acid-induced fall in [Ca(2+)](i) to an increase. Injection of ortho-vanadate increased steady-state [Ca(2+)](i) and its response to acidification, which was again blocked by CPA. The normal initial response to 10 mM caffeine, a transient increase in [Ca(2+)](i), did not occur with pH(i) below 7.1. When HCl was injected during a series of short CaCl(2) injections, the [Ca(2+)](i) transients (recorded as changes in the potential (V(Ca)) of the Ca(2+)-sensitive microelectrode), were reduced by only 20% for a 1 pH unit acidification, as was the rate of recovery after each injection. Calcium transients induced by brief depolarizations, however, were reduced by 60% by a similar acidification. These results suggest that low pH(i) has little effect on the plasma membrane calcium pump (PMCA) but important effects on the calcium stores, including blocking their response to caffeine. Acidosis inhibits spontaneous calcium release via the RYR, and leads to increased store content which is unloaded when pH(i) returns to normal. Spontaneous release is enhanced by the rise in [Ca(2+)](i) caused by inhibiting the PMCA. |
format | Text |
id | pubmed-2229535 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2002 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22295352008-04-16 The Effects of HCl and CaCl(2) Injections on Intracellular Calcium and pH in Voltage-clamped Snail (Helix aspersa) Neurons Thomas, Roger C. J Gen Physiol Article To investigate the mechanisms by which low intracellular pH influences calcium signaling, I have injected HCl, and in some experiments CaCl(2), into snail neurons while recording intracellular pH (pH(i)) and calcium concentration ([Ca(2+)](i)) with ion-sensitive microelectrodes. Unlike fluorescent indicators, these do not increase buffering. Slow injections of HCl (changing pH(i) by 0.1–0.2 pH units min(−1)) first decreased [Ca(2+)](i) while pH(i) was still close to normal, but then increased [Ca(2+)](i) when pH(i) fell below 6.8–7. As pH(i) recovered after such an injection, [Ca(2+)](i) started to fall but then increased transiently before returning to its preinjection level. Both the acid-induced decrease and the recovery-induced increase in [Ca(2+)](i) were abolished by cyclopiazonic acid, which empties calcium stores. Caffeine with or without ryanodine lowered [Ca(2+)](i) and converted the acid-induced fall in [Ca(2+)](i) to an increase. Injection of ortho-vanadate increased steady-state [Ca(2+)](i) and its response to acidification, which was again blocked by CPA. The normal initial response to 10 mM caffeine, a transient increase in [Ca(2+)](i), did not occur with pH(i) below 7.1. When HCl was injected during a series of short CaCl(2) injections, the [Ca(2+)](i) transients (recorded as changes in the potential (V(Ca)) of the Ca(2+)-sensitive microelectrode), were reduced by only 20% for a 1 pH unit acidification, as was the rate of recovery after each injection. Calcium transients induced by brief depolarizations, however, were reduced by 60% by a similar acidification. These results suggest that low pH(i) has little effect on the plasma membrane calcium pump (PMCA) but important effects on the calcium stores, including blocking their response to caffeine. Acidosis inhibits spontaneous calcium release via the RYR, and leads to increased store content which is unloaded when pH(i) returns to normal. Spontaneous release is enhanced by the rise in [Ca(2+)](i) caused by inhibiting the PMCA. The Rockefeller University Press 2002-10 /pmc/articles/PMC2229535/ /pubmed/12356857 http://dx.doi.org/10.1085/jgp.20028665 Text en Copyright © 2002, The Rockefeller University Press This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Article Thomas, Roger C. The Effects of HCl and CaCl(2) Injections on Intracellular Calcium and pH in Voltage-clamped Snail (Helix aspersa) Neurons |
title | The Effects of HCl and CaCl(2) Injections on Intracellular Calcium and pH in Voltage-clamped Snail (Helix aspersa) Neurons |
title_full | The Effects of HCl and CaCl(2) Injections on Intracellular Calcium and pH in Voltage-clamped Snail (Helix aspersa) Neurons |
title_fullStr | The Effects of HCl and CaCl(2) Injections on Intracellular Calcium and pH in Voltage-clamped Snail (Helix aspersa) Neurons |
title_full_unstemmed | The Effects of HCl and CaCl(2) Injections on Intracellular Calcium and pH in Voltage-clamped Snail (Helix aspersa) Neurons |
title_short | The Effects of HCl and CaCl(2) Injections on Intracellular Calcium and pH in Voltage-clamped Snail (Helix aspersa) Neurons |
title_sort | effects of hcl and cacl(2) injections on intracellular calcium and ph in voltage-clamped snail (helix aspersa) neurons |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229535/ https://www.ncbi.nlm.nih.gov/pubmed/12356857 http://dx.doi.org/10.1085/jgp.20028665 |
work_keys_str_mv | AT thomasrogerc theeffectsofhclandcacl2injectionsonintracellularcalciumandphinvoltageclampedsnailhelixaspersaneurons AT thomasrogerc effectsofhclandcacl2injectionsonintracellularcalciumandphinvoltageclampedsnailhelixaspersaneurons |