Cargando…
Shrimps Down Under: Evolutionary Relationships of Subterranean Crustaceans from Western Australia (Decapoda: Atyidae: Stygiocaris)
BACKGROUND: We investigated the large and small scale evolutionary relationships of the endemic Western Australian subterranean shrimp genus Stygiocaris (Atyidae) using nuclear and mitochondrial genes. Stygiocaris is part of the unique cave biota of the coastal, anchialine, limestones of the Cape Ra...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229661/ https://www.ncbi.nlm.nih.gov/pubmed/18286175 http://dx.doi.org/10.1371/journal.pone.0001618 |
Sumario: | BACKGROUND: We investigated the large and small scale evolutionary relationships of the endemic Western Australian subterranean shrimp genus Stygiocaris (Atyidae) using nuclear and mitochondrial genes. Stygiocaris is part of the unique cave biota of the coastal, anchialine, limestones of the Cape Range and Barrow Island, most of whose nearest evolutionary relations are found in coastal caves of the distant North Atlantic. The dominance of atyids in tropical waters and their food resources suggest they are pivotal in understanding these groundwater ecosystems. METHODOLOGY/PRINCIPLE FINDINGS: Our nuclear and mitochondrial analyses all recovered the Mexican cave genus Typhlatya as the sister taxon of Stygiocaris, rather than any of the numerous surface and cave atyids from Australia or the Indo-Pacific region. The two described Stygiocaris species were recovered as monophyletic, and a third, cryptic, species was discovered at a single site, which has very different physiochemical properties from the sites hosting the two described species. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that Stygiocaris and Typhlatya may descend from a common ancestor that lived in the coastal marine habitat of the ancient Tethys Sea, and were subsequently separated by plate tectonic movements. This vicariant process is commonly thought to explain the many disjunct anchialine faunas, but has rarely been demonstrated using phylogenetic techniques. The Cape Range's geological dynamism, which is probably responsible for the speciation of the various Stygiocaris species, has also led to geographic population structure within species. In particular, Stygiocaris lancifera is split into northern and southern groups, which correspond to population splits within other sympatric subterranean taxa. |
---|