Cargando…
Asap: A Framework for Over-Representation Statistics for Transcription Factor Binding Sites
BACKGROUND: In studies of gene regulation the efficient computational detection of over-represented transcription factor binding sites is an increasingly important aspect. Several published methods can be used for testing whether a set of hypothesised co-regulated genes share a common regulatory reg...
Autores principales: | Marstrand, Troels T., Frellsen, Jes, Moltke, Ida, Thiim, Martin, Valen, Eivind, Retelska, Dorota, Krogh, Anders |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229843/ https://www.ncbi.nlm.nih.gov/pubmed/18286180 http://dx.doi.org/10.1371/journal.pone.0001623 |
Ejemplares similares
-
A Probabilistic Model of RNA Conformational Space
por: Frellsen, Jes, et al.
Publicado: (2009) -
Adaptable probabilistic mapping of short reads using position specific scoring matrices
por: Kerpedjiev, Peter, et al.
Publicado: (2014) -
JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update
por: Bryne, Jan Christian, et al.
Publicado: (2008) -
ASAP: a machine learning framework for local protein properties
por: Brandes, Nadav, et al.
Publicado: (2016) -
ASAP distributed analysis
por: Munro, Craig, et al.
Publicado: (2007)