Cargando…
High-Level Expression, Functional Reconstitution, and Quaternary Structure of a Prokaryotic Clc-Type Chloride Channel
ClC-type anion-selective channels are widespread throughout eukaryotic organisms. BLAST homology searches reveal that many microbial genomes also contain members of the ClC family. An Escherichia coli–derived ClC Cl(−) channel homologue, “EriC,” the product of the yadQ gene, was overexpressed in E....
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1999
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2230540/ https://www.ncbi.nlm.nih.gov/pubmed/10539975 |
Sumario: | ClC-type anion-selective channels are widespread throughout eukaryotic organisms. BLAST homology searches reveal that many microbial genomes also contain members of the ClC family. An Escherichia coli–derived ClC Cl(−) channel homologue, “EriC,” the product of the yadQ gene, was overexpressed in E. coli and purified in milligram quantities in a single-step procedure. Reconstitution of purified EriC into liposomes confers on these membranes permeability to anions with selectivity similar to that observed electrophysiologically in mammalian ClC channels. Cross-linking studies argue that EriC is a homodimer in both detergent micelles and reconstituted liposomes, a conclusion corroborated by gel filtration and analytical sedimentation experiments. |
---|