Cargando…

Rapid Activation of the Cardiac Ryanodine Receptor by Submillisecond Calcium Stimuli

The local control concept of excitation–contraction coupling in the heart postulates that the activity of the sarcoplasmic reticulum ryanodine receptor channels (RyR) is controlled by Ca(2+) entry through adjoining sarcolemmal single dihydropyridine receptor channels (DHPRs). One unverified premise...

Descripción completa

Detalles Bibliográficos
Autores principales: Zahradníková, A., Zahradník, I., Györke, I., Györke, S.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1999
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2230654/
https://www.ncbi.nlm.nih.gov/pubmed/10578015
_version_ 1782150238392287232
author Zahradníková, A.
Zahradník, I.
Györke, I.
Györke, S.
author_facet Zahradníková, A.
Zahradník, I.
Györke, I.
Györke, S.
author_sort Zahradníková, A.
collection PubMed
description The local control concept of excitation–contraction coupling in the heart postulates that the activity of the sarcoplasmic reticulum ryanodine receptor channels (RyR) is controlled by Ca(2+) entry through adjoining sarcolemmal single dihydropyridine receptor channels (DHPRs). One unverified premise of this hypothesis is that the RyR must be fast enough to track the brief (<0.5 ms) Ca(2+) elevations accompanying single DHPR channel openings. To define the kinetic limits of effective trigger Ca(2+) signals, we recorded activity of single cardiac RyRs in lipid bilayers during rapid and transient increases in Ca(2+) generated by flash photolysis of DM-nitrophen. Application of such Ca(2+) spikes (amplitude ∼10–30 μM, duration ∼0.1–0.4 ms) resulted in activation of the RyRs with a probability that increased steeply (apparent Hill slope ∼2.5) with spike amplitude. The time constants of RyR activation were 0.07–0.27 ms, decreasing with spike amplitude. To fit the rising portion of the open probability, a single exponential function had to be raised to a power n ∼ 3. We show that these data could be adequately described with a gating scheme incorporating four sequential Ca(2+)-sensitive closed states between the resting and the first open states. These results provide evidence that brief Ca(2+) triggers are adequate to activate the RyR, and support the possibility that RyR channels are governed by single DHPR openings. They also provide evidence for the assumption that RyR activation requires binding of multiple Ca(2+) ions in accordance with the tetrameric organization of the channel protein.
format Text
id pubmed-2230654
institution National Center for Biotechnology Information
language English
publishDate 1999
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22306542008-04-22 Rapid Activation of the Cardiac Ryanodine Receptor by Submillisecond Calcium Stimuli Zahradníková, A. Zahradník, I. Györke, I. Györke, S. J Gen Physiol Original Article The local control concept of excitation–contraction coupling in the heart postulates that the activity of the sarcoplasmic reticulum ryanodine receptor channels (RyR) is controlled by Ca(2+) entry through adjoining sarcolemmal single dihydropyridine receptor channels (DHPRs). One unverified premise of this hypothesis is that the RyR must be fast enough to track the brief (<0.5 ms) Ca(2+) elevations accompanying single DHPR channel openings. To define the kinetic limits of effective trigger Ca(2+) signals, we recorded activity of single cardiac RyRs in lipid bilayers during rapid and transient increases in Ca(2+) generated by flash photolysis of DM-nitrophen. Application of such Ca(2+) spikes (amplitude ∼10–30 μM, duration ∼0.1–0.4 ms) resulted in activation of the RyRs with a probability that increased steeply (apparent Hill slope ∼2.5) with spike amplitude. The time constants of RyR activation were 0.07–0.27 ms, decreasing with spike amplitude. To fit the rising portion of the open probability, a single exponential function had to be raised to a power n ∼ 3. We show that these data could be adequately described with a gating scheme incorporating four sequential Ca(2+)-sensitive closed states between the resting and the first open states. These results provide evidence that brief Ca(2+) triggers are adequate to activate the RyR, and support the possibility that RyR channels are governed by single DHPR openings. They also provide evidence for the assumption that RyR activation requires binding of multiple Ca(2+) ions in accordance with the tetrameric organization of the channel protein. The Rockefeller University Press 1999-12-01 /pmc/articles/PMC2230654/ /pubmed/10578015 Text en © 1999 The Rockefeller University Press This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Original Article
Zahradníková, A.
Zahradník, I.
Györke, I.
Györke, S.
Rapid Activation of the Cardiac Ryanodine Receptor by Submillisecond Calcium Stimuli
title Rapid Activation of the Cardiac Ryanodine Receptor by Submillisecond Calcium Stimuli
title_full Rapid Activation of the Cardiac Ryanodine Receptor by Submillisecond Calcium Stimuli
title_fullStr Rapid Activation of the Cardiac Ryanodine Receptor by Submillisecond Calcium Stimuli
title_full_unstemmed Rapid Activation of the Cardiac Ryanodine Receptor by Submillisecond Calcium Stimuli
title_short Rapid Activation of the Cardiac Ryanodine Receptor by Submillisecond Calcium Stimuli
title_sort rapid activation of the cardiac ryanodine receptor by submillisecond calcium stimuli
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2230654/
https://www.ncbi.nlm.nih.gov/pubmed/10578015
work_keys_str_mv AT zahradnikovaa rapidactivationofthecardiacryanodinereceptorbysubmillisecondcalciumstimuli
AT zahradniki rapidactivationofthecardiacryanodinereceptorbysubmillisecondcalciumstimuli
AT gyorkei rapidactivationofthecardiacryanodinereceptorbysubmillisecondcalciumstimuli
AT gyorkes rapidactivationofthecardiacryanodinereceptorbysubmillisecondcalciumstimuli