Cargando…
Mining data from hemodynamic simulations via Bayesian emulation
BACKGROUND: Arterial geometry variability is inevitable both within and across individuals. To ensure realistic prediction of cardiovascular flows, there is a need for efficient numerical methods that can systematically account for geometric uncertainty. METHODS AND RESULTS: A statistical framework...
Autores principales: | Kolachalama, Vijaya B, Bressloff, Neil W, Nair, Prasanth B |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2231366/ https://www.ncbi.nlm.nih.gov/pubmed/18078522 http://dx.doi.org/10.1186/1475-925X-6-47 |
Ejemplares similares
-
Bayesian emulation and history matching of JUNE
por: Vernon, I., et al.
Publicado: (2022) -
DeepEmSat: Deep Emulation for Satellite Data Mining
por: Duffy, Kate, et al.
Publicado: (2019) -
Emulator-based Bayesian calibration of the CISNET colorectal cancer models
por: Pineda-Antunez, Carlos, et al.
Publicado: (2023) -
Reliable and resource preserving emulation for Bayesian model inference
por: Günther, Sven
Publicado: (2023) -
Accelerated Physical Emulation of Bayesian Inference in Spiking Neural Networks
por: Kungl, Akos F., et al.
Publicado: (2019)