Cargando…
A Feature-Selective Independent Component Analysis Method for Functional MRI
In this work, we propose a simple and effective scheme to incorporate prior knowledge about the sources of interest (SOIs) in independent component analysis (ICA) and apply the method to estimate brain activations from functional magnetic resonance imaging (fMRI) data. We name the proposed method as...
Autores principales: | Li, Yi-Ou, Adalı, Tülay, Calhoun, Vince D. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2233814/ https://www.ncbi.nlm.nih.gov/pubmed/18288254 http://dx.doi.org/10.1155/2007/15635 |
Ejemplares similares
-
Independent Component Analysis for Brain fMRI Does Indeed Select for Maximal Independence
por: Calhoun, Vince D., et al.
Publicado: (2013) -
Correction: Independent Component Analysis for Brain fMRI Does Indeed Select for Maximal Independence
por: Calhoun, Vince D., et al.
Publicado: (2013) -
Group Study of Simulated Driving fMRI Data by Multiset Canonical Correlation Analysis
por: Li, Yi-Ou, et al.
Publicado: (2011) -
Multimodal subspace independent vector analysis captures latent subspace structures in large multimodal neuroimaging studies
por: Li, Xinhui, et al.
Publicado: (2023) -
A Scalable Approach to Independent Vector Analysis by Shared Subspace Separation for Multi-Subject fMRI Analysis
por: Sun, Mingyu, et al.
Publicado: (2023)