Cargando…

Significance of Nano- and Microtopography for Cell-Surface Interactions in Orthopaedic Implants

Cell-surface interactions play a crucial role for biomaterial application in orthopaedics. It is evident that not only the chemical composition of solid substances influence cellular adherence, migration, proliferation and differentiation but also the surface topography of a biomaterial. The progres...

Descripción completa

Detalles Bibliográficos
Autores principales: Jäger, M., Zilkens, C., Zanger, K., Krauspe, R.
Formato: Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2233875/
https://www.ncbi.nlm.nih.gov/pubmed/18274618
http://dx.doi.org/10.1155/2007/69036
Descripción
Sumario:Cell-surface interactions play a crucial role for biomaterial application in orthopaedics. It is evident that not only the chemical composition of solid substances influence cellular adherence, migration, proliferation and differentiation but also the surface topography of a biomaterial. The progressive application of nanostructured surfaces in medicine has gained increasing interest to improve the cytocompatibility and osteointegration of orthopaedic implants. Therefore, the understanding of cell-surface interactions is of major interest for these substances. In this review, we elucidate the principle mechanisms of nano- and microscale cell-surface interactions in vitro for different cell types onto typical orthopaedic biomaterials such as titanium (Ti), cobalt-chrome-molybdenum (CoCrMo) alloys, stainless steel (SS), as well as synthetic polymers (UHMWPE, XLPE, PEEK, PLLA). In addition, effects of nano- and microscaled particles and their significance in orthopaedics were reviewed. The significance for the cytocompatibility of nanobiomaterials is discussed critically.