Cargando…

A Subspace Method for Dynamical Estimation of Evoked Potentials

It is a challenge in evoked potential (EP) analysis to incorporate prior physiological knowledge for estimation. In this paper, we address the problem of single-channel trial-to-trial EP characteristics estimation. Prior information about phase-locked properties of the EPs is assesed by means of est...

Descripción completa

Detalles Bibliográficos
Autores principales: Georgiadis, Stefanos D., Ranta-aho, Perttu O., Tarvainen, Mika P., Karjalainen, Pasi A.
Formato: Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2233897/
https://www.ncbi.nlm.nih.gov/pubmed/18288257
http://dx.doi.org/10.1155/2007/61916
_version_ 1782150321015881728
author Georgiadis, Stefanos D.
Ranta-aho, Perttu O.
Tarvainen, Mika P.
Karjalainen, Pasi A.
author_facet Georgiadis, Stefanos D.
Ranta-aho, Perttu O.
Tarvainen, Mika P.
Karjalainen, Pasi A.
author_sort Georgiadis, Stefanos D.
collection PubMed
description It is a challenge in evoked potential (EP) analysis to incorporate prior physiological knowledge for estimation. In this paper, we address the problem of single-channel trial-to-trial EP characteristics estimation. Prior information about phase-locked properties of the EPs is assesed by means of estimated signal subspace and eigenvalue decomposition. Then for those situations that dynamic fluctuations from stimulus-to-stimulus could be expected, prior information can be exploited by means of state-space modeling and recursive Bayesian mean square estimation methods (Kalman filtering and smoothing). We demonstrate that a few dominant eigenvectors of the data correlation matrix are able to model trend-like changes of some component of the EPs, and that Kalman smoother algorithm is to be preferred in terms of better tracking capabilities and mean square error reduction. We also demonstrate the effect of strong artifacts, particularly eye blinks, on the quality of the signal subspace and EP estimates by means of independent component analysis applied as a prepossessing step on the multichannel measurements.
format Text
id pubmed-2233897
institution National Center for Biotechnology Information
language English
publishDate 2007
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-22338972008-02-20 A Subspace Method for Dynamical Estimation of Evoked Potentials Georgiadis, Stefanos D. Ranta-aho, Perttu O. Tarvainen, Mika P. Karjalainen, Pasi A. Comput Intell Neurosci Research Article It is a challenge in evoked potential (EP) analysis to incorporate prior physiological knowledge for estimation. In this paper, we address the problem of single-channel trial-to-trial EP characteristics estimation. Prior information about phase-locked properties of the EPs is assesed by means of estimated signal subspace and eigenvalue decomposition. Then for those situations that dynamic fluctuations from stimulus-to-stimulus could be expected, prior information can be exploited by means of state-space modeling and recursive Bayesian mean square estimation methods (Kalman filtering and smoothing). We demonstrate that a few dominant eigenvectors of the data correlation matrix are able to model trend-like changes of some component of the EPs, and that Kalman smoother algorithm is to be preferred in terms of better tracking capabilities and mean square error reduction. We also demonstrate the effect of strong artifacts, particularly eye blinks, on the quality of the signal subspace and EP estimates by means of independent component analysis applied as a prepossessing step on the multichannel measurements. Hindawi Publishing Corporation 2007 2007-11-12 /pmc/articles/PMC2233897/ /pubmed/18288257 http://dx.doi.org/10.1155/2007/61916 Text en Copyright © 2007 Stefanos D. Georgiadis et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Georgiadis, Stefanos D.
Ranta-aho, Perttu O.
Tarvainen, Mika P.
Karjalainen, Pasi A.
A Subspace Method for Dynamical Estimation of Evoked Potentials
title A Subspace Method for Dynamical Estimation of Evoked Potentials
title_full A Subspace Method for Dynamical Estimation of Evoked Potentials
title_fullStr A Subspace Method for Dynamical Estimation of Evoked Potentials
title_full_unstemmed A Subspace Method for Dynamical Estimation of Evoked Potentials
title_short A Subspace Method for Dynamical Estimation of Evoked Potentials
title_sort subspace method for dynamical estimation of evoked potentials
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2233897/
https://www.ncbi.nlm.nih.gov/pubmed/18288257
http://dx.doi.org/10.1155/2007/61916
work_keys_str_mv AT georgiadisstefanosd asubspacemethodfordynamicalestimationofevokedpotentials
AT rantaahoperttuo asubspacemethodfordynamicalestimationofevokedpotentials
AT tarvainenmikap asubspacemethodfordynamicalestimationofevokedpotentials
AT karjalainenpasia asubspacemethodfordynamicalestimationofevokedpotentials
AT georgiadisstefanosd subspacemethodfordynamicalestimationofevokedpotentials
AT rantaahoperttuo subspacemethodfordynamicalestimationofevokedpotentials
AT tarvainenmikap subspacemethodfordynamicalestimationofevokedpotentials
AT karjalainenpasia subspacemethodfordynamicalestimationofevokedpotentials