Cargando…
Online Artifact Removal for Brain-Computer Interfaces Using Support Vector Machines and Blind Source Separation
We propose a combination of blind source separation (BSS) and independent component analysis (ICA) (signal decomposition into artifacts and nonartifacts) with support vector machines (SVMs) (automatic classification) that are designed for online usage. In order to select a suitable BSS/ICA method, t...
Autores principales: | Halder, Sebastian, Bensch, Michael, Mellinger, Jürgen, Bogdan, Martin, Kübler, Andrea, Birbaumer, Niels, Rosenstiel, Wolfgang |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2234090/ https://www.ncbi.nlm.nih.gov/pubmed/18288259 http://dx.doi.org/10.1155/2007/82069 |
Ejemplares similares
-
Prediction of Auditory and Visual P300 Brain-Computer Interface Aptitude
por: Halder, Sebastian, et al.
Publicado: (2013) -
Prediction of brain-computer interface aptitude from individual brain structure
por: Halder, S., et al.
Publicado: (2013) -
Nessi: An EEG-Controlled Web Browser for
Severely Paralyzed Patients
por: Bensch, Michael, et al.
Publicado: (2007) -
The Influence of Psychological State and Motivation on Brain–Computer Interface Performance in Patients with Amyotrophic Lateral Sclerosis – a Longitudinal Study
por: Nijboer, Femke, et al.
Publicado: (2010) -
Peak Detection with Online Electroencephalography (EEG) Artifact Removal for Brain–Computer Interface (BCI) Purposes
por: Benda, Mihaly, et al.
Publicado: (2019)