Cargando…
Evolutionary conservation of plant gibberellin signalling pathway components
BACKGROUND: Gibberellins (GA) are plant hormones that can regulate germination, elongation growth, and sex determination. They ubiquitously occur in seed plants. The discovery of gibberellin receptors, together with advances in understanding the function of key components of GA signalling in Arabido...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2234411/ https://www.ncbi.nlm.nih.gov/pubmed/18047669 http://dx.doi.org/10.1186/1471-2229-7-65 |
_version_ | 1782150361200459776 |
---|---|
author | Vandenbussche, Filip Fierro, Ana C Wiedemann, Gertrud Reski, Ralf Van Der Straeten, Dominique |
author_facet | Vandenbussche, Filip Fierro, Ana C Wiedemann, Gertrud Reski, Ralf Van Der Straeten, Dominique |
author_sort | Vandenbussche, Filip |
collection | PubMed |
description | BACKGROUND: Gibberellins (GA) are plant hormones that can regulate germination, elongation growth, and sex determination. They ubiquitously occur in seed plants. The discovery of gibberellin receptors, together with advances in understanding the function of key components of GA signalling in Arabidopsis and rice, reveal a fairly short GA signal transduction route. The pathway essentially consists of GID1 gibberellin receptors that interact with F-box proteins, which in turn regulate degradation of downstream DELLA proteins, suppressors of GA-controlled responses. RESULTS: Arabidopsis sequences of the gibberellin signalling compounds were used to screen databases from a variety of plants, including protists, for homologues, providing indications for the degree of conservation of the pathway. The pathway as such appears completely absent in protists, the moss Physcomitrella patens shares only a limited homology with the Arabidopsis proteins, thus lacking essential characteristics of the classical GA signalling pathway, while the lycophyte Selaginella moellendorffii contains a possible ortholog for each component. The occurrence of classical GA responses can as yet not be linked with the presence of homologues of the signalling pathway. Alignments and display in neighbour joining trees of the GA signalling components confirm the close relationship of gymnosperms, monocotyledonous and dicotyledonous plants, as suggested from previous studies. CONCLUSION: Homologues of the GA-signalling pathway were mainly found in vascular plants. The GA signalling system may have its evolutionary molecular onset in Physcomitrella patens, where GAs at higher concentrations affect gravitropism and elongation growth. |
format | Text |
id | pubmed-2234411 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-22344112008-02-08 Evolutionary conservation of plant gibberellin signalling pathway components Vandenbussche, Filip Fierro, Ana C Wiedemann, Gertrud Reski, Ralf Van Der Straeten, Dominique BMC Plant Biol Research Article BACKGROUND: Gibberellins (GA) are plant hormones that can regulate germination, elongation growth, and sex determination. They ubiquitously occur in seed plants. The discovery of gibberellin receptors, together with advances in understanding the function of key components of GA signalling in Arabidopsis and rice, reveal a fairly short GA signal transduction route. The pathway essentially consists of GID1 gibberellin receptors that interact with F-box proteins, which in turn regulate degradation of downstream DELLA proteins, suppressors of GA-controlled responses. RESULTS: Arabidopsis sequences of the gibberellin signalling compounds were used to screen databases from a variety of plants, including protists, for homologues, providing indications for the degree of conservation of the pathway. The pathway as such appears completely absent in protists, the moss Physcomitrella patens shares only a limited homology with the Arabidopsis proteins, thus lacking essential characteristics of the classical GA signalling pathway, while the lycophyte Selaginella moellendorffii contains a possible ortholog for each component. The occurrence of classical GA responses can as yet not be linked with the presence of homologues of the signalling pathway. Alignments and display in neighbour joining trees of the GA signalling components confirm the close relationship of gymnosperms, monocotyledonous and dicotyledonous plants, as suggested from previous studies. CONCLUSION: Homologues of the GA-signalling pathway were mainly found in vascular plants. The GA signalling system may have its evolutionary molecular onset in Physcomitrella patens, where GAs at higher concentrations affect gravitropism and elongation growth. BioMed Central 2007-11-29 /pmc/articles/PMC2234411/ /pubmed/18047669 http://dx.doi.org/10.1186/1471-2229-7-65 Text en Copyright © 2007 Vandenbussche et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Vandenbussche, Filip Fierro, Ana C Wiedemann, Gertrud Reski, Ralf Van Der Straeten, Dominique Evolutionary conservation of plant gibberellin signalling pathway components |
title | Evolutionary conservation of plant gibberellin signalling pathway components |
title_full | Evolutionary conservation of plant gibberellin signalling pathway components |
title_fullStr | Evolutionary conservation of plant gibberellin signalling pathway components |
title_full_unstemmed | Evolutionary conservation of plant gibberellin signalling pathway components |
title_short | Evolutionary conservation of plant gibberellin signalling pathway components |
title_sort | evolutionary conservation of plant gibberellin signalling pathway components |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2234411/ https://www.ncbi.nlm.nih.gov/pubmed/18047669 http://dx.doi.org/10.1186/1471-2229-7-65 |
work_keys_str_mv | AT vandenbusschefilip evolutionaryconservationofplantgibberellinsignallingpathwaycomponents AT fierroanac evolutionaryconservationofplantgibberellinsignallingpathwaycomponents AT wiedemanngertrud evolutionaryconservationofplantgibberellinsignallingpathwaycomponents AT reskiralf evolutionaryconservationofplantgibberellinsignallingpathwaycomponents AT vanderstraetendominique evolutionaryconservationofplantgibberellinsignallingpathwaycomponents |