Cargando…
Na Self Inhibition of Human Epithelial Na Channel: Temperature Dependence and Effect of Extracellular Proteases
The regulation of the open probability of the epithelial Na(+) channel (ENaC) by the extracellular concentration of Na(+), a phenomenon called “Na(+) self inhibition,” has been well described in several natural tight epithelia, but its molecular mechanism is not known. We have studied the kinetics o...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2002
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2234458/ https://www.ncbi.nlm.nih.gov/pubmed/12149276 http://dx.doi.org/10.1085/jgp.20028612 |
Sumario: | The regulation of the open probability of the epithelial Na(+) channel (ENaC) by the extracellular concentration of Na(+), a phenomenon called “Na(+) self inhibition,” has been well described in several natural tight epithelia, but its molecular mechanism is not known. We have studied the kinetics of Na(+) self inhibition on human ENaC expressed in Xenopus oocytes. Rapid removal of amiloride or rapid increase in the extracellular Na(+) concentration from 1 to 100 mM resulted in a peak inward current followed by a decline to a lower quasi-steady-state current. The rate of current decline and the steady-state level were temperature dependent and the current transient could be well explained by a two-state (active-inactive) model with a weakly temperature-dependent (Q(10)act = 1.5) activation rate and a strongly temperature-dependant (Q(10)inact = 8.0) inactivation rate. The steep temperature dependence of the inactivation rate resulted in the paradoxical decrease in the steady-state amiloride-sensitive current at high temperature. Na(+) self inhibition depended only on the extracellular Na(+) concentration but not on the amplitude of the inward current, and it was observed as a decrease of the conductance at the reversal potential for Na(+) as well as a reduction of Na(+) outward current. Self inhibition could be prevented by exposure to extracellular protease, a treatment known to activate ENaC or by treatment with p-CMB. After protease treatment, the amiloride-sensitive current displayed the expected increase with rising temperature. These results indicate that Na(+) self inhibition is an intrinsic property of sodium channels resulting from the expression of the α, β, and γ subunits of human ENaC in Xenopus oocyte. The extracellular Na(+)-dependent inactivation has a large energy of activation and can be abolished by treatment with extracellular proteases. |
---|