Cargando…
Using machine learning algorithms to guide rehabilitation planning for home care clients
BACKGROUND: Targeting older clients for rehabilitation is a clinical challenge and a research priority. We investigate the potential of machine learning algorithms – Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) – to guide rehabilitation planning for home care clients. METHODS: This stu...
Autores principales: | Zhu, Mu, Zhang, Zhanyang, Hirdes, John P, Stolee, Paul |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2235834/ https://www.ncbi.nlm.nih.gov/pubmed/18096079 http://dx.doi.org/10.1186/1472-6947-7-41 |
Ejemplares similares
-
Opinion versus practice regarding the use of rehabilitation services in home care: an investigation using machine learning algorithms
por: Cheng, Lu, et al.
Publicado: (2015) -
Care planning needs of palliative home care clients: Development of the interRAI palliative care assessment clinical assessment protocols (CAPs)
por: Freeman, Shannon, et al.
Publicado: (2014) -
Development and validation of an algorithm to assess risk of first-time falling among home care clients
por: Kuspinar, Ayse, et al.
Publicado: (2019) -
Recent Visual Decline—A Health Hazard with Consequences for Social Life: A Study of Home Care Clients in 12 Countries
por: Grue, Else Vengnes, et al.
Publicado: (2010) -
Data sharing between home care professionals: a feasibility study using the RAI Home Care instrument
por: Guthrie, Dawn M, et al.
Publicado: (2014)