Cargando…
Self-assembling Fmoc dipeptide hydrogel for in situ 3D cell culturing
BACKGROUND: Conventional cell culture studies have been performed on 2D surfaces, resulting in flat, extended cell growth. More relevant studies are desired to better mimic 3D in vivo tissue growth. Such realistic environments should be the aim of any cell growth study, requiring new methods for cul...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2235856/ https://www.ncbi.nlm.nih.gov/pubmed/18070345 http://dx.doi.org/10.1186/1472-6750-7-88 |
_version_ | 1782150400310247424 |
---|---|
author | Liebmann, Thomas Rydholm, Susanna Akpe, Victor Brismar, Hjalmar |
author_facet | Liebmann, Thomas Rydholm, Susanna Akpe, Victor Brismar, Hjalmar |
author_sort | Liebmann, Thomas |
collection | PubMed |
description | BACKGROUND: Conventional cell culture studies have been performed on 2D surfaces, resulting in flat, extended cell growth. More relevant studies are desired to better mimic 3D in vivo tissue growth. Such realistic environments should be the aim of any cell growth study, requiring new methods for culturing cells in vitro. Cell biology is also tending toward miniaturization for increased efficiency and specificity. This paper discusses the application of a self-assembling peptide-derived hydrogel for use as a 3D cell culture scaffold at the microscale. RESULTS: Phenylalanine derivative hydrogel formation was seen to occur in multiple dispersion media. Cells were immobilized in situ within microchambers designed for cell analysis. Use of the highly biocompatible hydrogel components and simplistic procedures significantly reduced the cytotoxic effects seen with alternate 3D culture materials and microstructure loading methods. Cells were easily immobilized, sustained and removed from microchambers. Differences in growth morphology were seen in the cultured cells, owing to the 3-dimentional character of the gel structure. Degradation improved the removal of hydrogel from the microstructures, permitting reuse of the analysis platforms. CONCLUSION: Self-assembling diphenylalanine derivative hydrogel provided a method to dramatically reduce the typical difficulties of microculture formation. Effective generation of patterned 3D cultures will lead to improved cell study results by better modeling in vivo growth environments and increasing efficiency and specificity of cell studies. Use of simplified growth scaffolds such as peptide-derived hydrogel should be seen as highly advantageous and will likely become more commonplace in cell culture methodology. |
format | Text |
id | pubmed-2235856 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-22358562008-02-09 Self-assembling Fmoc dipeptide hydrogel for in situ 3D cell culturing Liebmann, Thomas Rydholm, Susanna Akpe, Victor Brismar, Hjalmar BMC Biotechnol Research Article BACKGROUND: Conventional cell culture studies have been performed on 2D surfaces, resulting in flat, extended cell growth. More relevant studies are desired to better mimic 3D in vivo tissue growth. Such realistic environments should be the aim of any cell growth study, requiring new methods for culturing cells in vitro. Cell biology is also tending toward miniaturization for increased efficiency and specificity. This paper discusses the application of a self-assembling peptide-derived hydrogel for use as a 3D cell culture scaffold at the microscale. RESULTS: Phenylalanine derivative hydrogel formation was seen to occur in multiple dispersion media. Cells were immobilized in situ within microchambers designed for cell analysis. Use of the highly biocompatible hydrogel components and simplistic procedures significantly reduced the cytotoxic effects seen with alternate 3D culture materials and microstructure loading methods. Cells were easily immobilized, sustained and removed from microchambers. Differences in growth morphology were seen in the cultured cells, owing to the 3-dimentional character of the gel structure. Degradation improved the removal of hydrogel from the microstructures, permitting reuse of the analysis platforms. CONCLUSION: Self-assembling diphenylalanine derivative hydrogel provided a method to dramatically reduce the typical difficulties of microculture formation. Effective generation of patterned 3D cultures will lead to improved cell study results by better modeling in vivo growth environments and increasing efficiency and specificity of cell studies. Use of simplified growth scaffolds such as peptide-derived hydrogel should be seen as highly advantageous and will likely become more commonplace in cell culture methodology. BioMed Central 2007-12-10 /pmc/articles/PMC2235856/ /pubmed/18070345 http://dx.doi.org/10.1186/1472-6750-7-88 Text en Copyright © 2007 Liebmann et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Liebmann, Thomas Rydholm, Susanna Akpe, Victor Brismar, Hjalmar Self-assembling Fmoc dipeptide hydrogel for in situ 3D cell culturing |
title | Self-assembling Fmoc dipeptide hydrogel for in situ 3D cell culturing |
title_full | Self-assembling Fmoc dipeptide hydrogel for in situ 3D cell culturing |
title_fullStr | Self-assembling Fmoc dipeptide hydrogel for in situ 3D cell culturing |
title_full_unstemmed | Self-assembling Fmoc dipeptide hydrogel for in situ 3D cell culturing |
title_short | Self-assembling Fmoc dipeptide hydrogel for in situ 3D cell culturing |
title_sort | self-assembling fmoc dipeptide hydrogel for in situ 3d cell culturing |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2235856/ https://www.ncbi.nlm.nih.gov/pubmed/18070345 http://dx.doi.org/10.1186/1472-6750-7-88 |
work_keys_str_mv | AT liebmannthomas selfassemblingfmocdipeptidehydrogelforinsitu3dcellculturing AT rydholmsusanna selfassemblingfmocdipeptidehydrogelforinsitu3dcellculturing AT akpevictor selfassemblingfmocdipeptidehydrogelforinsitu3dcellculturing AT brismarhjalmar selfassemblingfmocdipeptidehydrogelforinsitu3dcellculturing |