Cargando…

Using Growing Self-Organising Maps to Improve the Binning Process in Environmental Whole-Genome Shotgun Sequencing

Metagenomic projects using whole-genome shotgun (WGS) sequencing produces many unassembled DNA sequences and small contigs. The step of clustering these sequences, based on biological and molecular features, is called binning. A reported strategy for binning that combines oligonucleotide frequency a...

Descripción completa

Detalles Bibliográficos
Autores principales: Chan, Chon-Kit Kenneth, Hsu, Arthur L., Tang, Sen-Lin, Halgamuge, Saman K.
Formato: Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2235928/
https://www.ncbi.nlm.nih.gov/pubmed/18288261
http://dx.doi.org/10.1155/2008/513701
Descripción
Sumario:Metagenomic projects using whole-genome shotgun (WGS) sequencing produces many unassembled DNA sequences and small contigs. The step of clustering these sequences, based on biological and molecular features, is called binning. A reported strategy for binning that combines oligonucleotide frequency and self-organising maps (SOM) shows high potential. We improve this strategy by identifying suitable training features, implementing a better clustering algorithm, and defining quantitative measures for assessing results. We investigated the suitability of each of di-, tri-, tetra-, and pentanucleotide frequencies. The results show that dinucleotide frequency is not a sufficiently strong signature for binning 10 kb long DNA sequences, compared to the other three. Furthermore, we observed that increased order of oligonucleotide frequency may deteriorate the assignment result in some cases, which indicates the possible existence of optimal species-specific oligonucleotide frequency. We replaced SOM with growing self-organising map (GSOM) where comparable results are obtained while gaining [Formula: see text] speed improvement.