Cargando…
EPGD: a comprehensive web resource for integrating and displaying eukaryotic paralog/paralogon information
Gene duplication is common in all three domains of life, especially in eukaryotic genomes. The duplicates provide new material for the action of evolutionary forces such as selection or genetic drift. Here we describe a sophisticated procedure to extract duplicated genes (paralogs) from 26 available...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2238967/ https://www.ncbi.nlm.nih.gov/pubmed/17984073 http://dx.doi.org/10.1093/nar/gkm924 |
Sumario: | Gene duplication is common in all three domains of life, especially in eukaryotic genomes. The duplicates provide new material for the action of evolutionary forces such as selection or genetic drift. Here we describe a sophisticated procedure to extract duplicated genes (paralogs) from 26 available eukaryotic genomes, to pre-calculate several evolutionary indexes (evolutionary rate, synonymous distance/clock, transition redundant exchange clock, etc.) based on the paralog family, and to identify block or segmental duplications (paralogons). We also constructed an internet-accessible Eukaryotic Paralog Group Database (EPGD; http://epgd.biosino.org/EPGD/). The database is gene-centered and organized by paralog family. It focuses on paralogs and evolutionary duplication events. The paralog families and paralogons can be searched by text or sequence, and are downloadable from the website as plain text files. The database will be very useful for both experimentalists and bioinformaticians interested in the study of duplication events or paralog families. |
---|