Cargando…

Analogues of amphibian alkaloids: total synthesis of (5R,8S,8aS)-(−)-8-methyl-5-pentyloctahydroindolizine (8-epi-indolizidine 209B) and [(1S,4R,9aS)-(−)-4-pentyloctahydro-2H-quinolizin-1-yl]methanol

BACKGROUND: Prior work from these laboratories has centred on the development of enaminones as versatile intermediates for the synthesis of alkaloids and other nitrogen-containing heterocycles. In this paper we describe the enantioselective synthesis of indolizidine and quinolizidine analogues of bi...

Descripción completa

Detalles Bibliográficos
Autores principales: Michael, Joseph P, Accone, Claudia, de Koning, Charles B, van der Westhuyzen, Christiaan W
Formato: Texto
Lenguaje:English
Publicado: Beilstein-Institut 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2241605/
https://www.ncbi.nlm.nih.gov/pubmed/18205934
http://dx.doi.org/10.1186/1860-5397-4-5
Descripción
Sumario:BACKGROUND: Prior work from these laboratories has centred on the development of enaminones as versatile intermediates for the synthesis of alkaloids and other nitrogen-containing heterocycles. In this paper we describe the enantioselective synthesis of indolizidine and quinolizidine analogues of bicyclic amphibian alkaloids via pyrrolidinylidene- and piperidinylidene-containing enaminones. RESULTS: Our previously reported synthesis of racemic 8-epi-indolizidine 209B has been extended to the laevorotatory enantiomer, (−)-9. Attempts to adapt the synthetic route in order to obtain quinolizidine analogues revealed that a key piperidinylidene-containing enaminone intermediate (+)-28 was less tractable than its pyrrolidinylidene counterpart, thereby necessitating modifications that included timing changes and additional protection–deprotection steps. A successful synthesis of [(1S,4R,9aS)-4-pentyloctahydro-2H-quinolizin-1-yl]methanol (−)-41 from the chiral amine tert-butyl (3R)-3-{benzyl[(1R)-1-phenylethyl]amino}octanoate (+)-14 was achieved in 14 steps and an overall yield of 20.4%. CONCLUSION: The methodology reported in this article was successfully applied to the enantioselective synthesis of the title compounds. It paves the way for the total synthesis of a range of cis-5,8-disubstituted indolizidines and cis-1,4-disubstituted quinolizidines, as well as the naturally occurring trans-disubstituted alkaloids.