Cargando…
Features generated for computational splice-site prediction correspond to functional elements
BACKGROUND: Accurate selection of splice sites during the splicing of precursors to messenger RNA requires both relatively well-characterized signals at the splice sites and auxiliary signals in the adjacent exons and introns. We previously described a feature generation algorithm (FGA) that is capa...
Autores principales: | Dogan, Rezarta Islamaj, Getoor, Lise, Wilbur, W John, Mount, Stephen M |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2241647/ https://www.ncbi.nlm.nih.gov/pubmed/17958908 http://dx.doi.org/10.1186/1471-2105-8-410 |
Ejemplares similares
-
SplicePort—An interactive splice-site analysis tool
por: Dogan, Rezarta Islamaj, et al.
Publicado: (2007) -
Click-words: learning to predict document keywords from a user perspective
por: Islamaj Doğan, Rezarta, et al.
Publicado: (2010) -
Natural language processing pipelines to annotate BioC collections with an application to the NCBI disease corpus
por: Comeau, Donald C., et al.
Publicado: (2014) -
Finding abbreviations in biomedical literature: three BioC-compatible modules and four BioC-formatted corpora
por: Islamaj Doğan, Rezarta, et al.
Publicado: (2014) -
Topics in machine learning for biomedical literature analysis and text retrieval
por: Islamaj Doğan, Rezarta, et al.
Publicado: (2011)