Cargando…

Rho-independent transcription terminators inhibit RNase P processing of the secG leuU and metT tRNA polycistronic transcripts in Escherichia coli

The widely accepted model for the processing of tRNAs in Escherichia coli involves essential initial cleavages by RNase E within polycistronic transcripts to generate pre-tRNAs that subsequently become substrates for RNase P. However, recently we identified two polycistronic tRNA transcripts whose e...

Descripción completa

Detalles Bibliográficos
Autores principales: Mohanty, Bijoy K., Kushner, Sidney R.
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2008
Materias:
RNA
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2241853/
https://www.ncbi.nlm.nih.gov/pubmed/18033800
http://dx.doi.org/10.1093/nar/gkm991
Descripción
Sumario:The widely accepted model for the processing of tRNAs in Escherichia coli involves essential initial cleavages by RNase E within polycistronic transcripts to generate pre-tRNAs that subsequently become substrates for RNase P. However, recently we identified two polycistronic tRNA transcripts whose endonucleolytic processing was solely dependent on RNase P. Here we show that the processing of the secG leuU and metT leuW glnU glnW metU glnV glnX polycistronic transcripts takes place through a different type of maturation pathway. Specifically, RNase P separates the tRNA units within each operon following the endonucleolytic removal of the distal Rho-independent transcription terminator, primarily by RNase E. Failure to remove the Rho-independent transcription terminator inhibits RNase P processing of both transcripts leading to a decrease in mature tRNA levels and dramatically increased levels of full-length transcripts in an RNase E deletion strain. Furthermore, we show for the first time that RNase G also removes the Rho-independent transcription terminator associated with the secG leuU operon. Our data also demonstrate that the Rne-1 protein retains significant activity on tRNA substrates at the non-permissive temperature. Taken together it is clear that there are multiple pathways involved in the maturation of tRNAs in E. coli.