Cargando…
Epstein–Barr virus-encoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF5
MicroRNAs (miRNAs) have been implicated in sequence-specific cleavage, translational repression or deadenylation of specific target mRNAs resulting in post-transcriptional gene silencing. Epstein–Barr virus (EBV) encodes 23 miRNAs of unknown function. Here we show that the EBV-encoded miRNA miR-BART...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2241876/ https://www.ncbi.nlm.nih.gov/pubmed/18073197 http://dx.doi.org/10.1093/nar/gkm1080 |
Sumario: | MicroRNAs (miRNAs) have been implicated in sequence-specific cleavage, translational repression or deadenylation of specific target mRNAs resulting in post-transcriptional gene silencing. Epstein–Barr virus (EBV) encodes 23 miRNAs of unknown function. Here we show that the EBV-encoded miRNA miR-BART2 down-regulates the viral DNA polymerase BALF5. MiR-BART2 guides cleavage within the 3′-untranslated region (3′UTR) of BALF5 by virtue of its complete complementarity to its target. Induction of the lytic viral replication cycle results in a reduction of the level of miR-BART2 with a strong concomitant decrease of cleavage of the BALF5 3′UTR. Expression of miR-BART2 down-regulates the activity of a luciferase reporter gene containing the BALF5 3′UTR. Forced expression of miR-BART2 during lytic replication resulted in a 40–50% reduction of the level of BALF5 protein and a 20% reduction of the amount of virus released from EBV-infected cells. Our results are compatible with the notion that EBV-miR-BART2 inhibits transition from latent to lytic viral replication. |
---|