Cargando…
Comparison of SUMO fusion technology with traditional gene fusion systems: Enhanced expression and solubility with SUMO
Despite the availability of numerous gene fusion systems, recombinant protein expression in Escherichia coli remains difficult. Establishing the best fusion partner for difficult-to-express proteins remains empirical. To determine which fusion tags are best suited for difficult-to-express proteins,...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2242369/ https://www.ncbi.nlm.nih.gov/pubmed/16322573 http://dx.doi.org/10.1110/ps.051812706 |
_version_ | 1782150560088064000 |
---|---|
author | Marblestone, Jeffrey G. Edavettal, Suzanne C. Lim, Yiting Lim, Peter Zuo, Xun Butt, Tauseef R. |
author_facet | Marblestone, Jeffrey G. Edavettal, Suzanne C. Lim, Yiting Lim, Peter Zuo, Xun Butt, Tauseef R. |
author_sort | Marblestone, Jeffrey G. |
collection | PubMed |
description | Despite the availability of numerous gene fusion systems, recombinant protein expression in Escherichia coli remains difficult. Establishing the best fusion partner for difficult-to-express proteins remains empirical. To determine which fusion tags are best suited for difficult-to-express proteins, a comparative analysis of the newly described SUMO fusion system with a variety of commonly used fusion systems was completed. For this study, three model proteins, enhanced green florescent protein (eGFP), matrix metalloprotease-13 (MMP13), and myostatin (growth differentiating factor-8, GDF8), were fused to the C termini of maltose-binding protein (MBP), glutathione S-transferase (GST), thioredoxin (TRX), NUS A, ubiquitin (Ub), and SUMO tags. These constructswere expressed in E. coli and evaluated for expression and solubility. As expected, the fusion tags varied in their ability to produce tractable quantities of soluble eGFP, MMP13, and GDF8. SUMO and NUS A fusions enhanced expression and solubility of recombinant proteins most dramatically. The ease at which SUMO and NUS A fusion tags were removed from their partner proteins was then determined. SUMO fusions are cleaved by the natural SUMO protease, while an AcTEV protease site had to be engineered between NUS A and its partner protein. A kinetic analysis showed that the SUMO and AcTEV proteases had similarK(M) values, but SUMOprotease had a 25-fold higher k(cat) than AcTEV protease, indicating a more catalytically efficient enzyme. Taken together, these results demonstrate that SUMO is superior to commonly used fusion tags in enhancing expression and solubility with the distinction of generating recombinant protein with native sequences. |
format | Text |
id | pubmed-2242369 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2006 |
publisher | Cold Spring Harbor Laboratory Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22423692008-03-06 Comparison of SUMO fusion technology with traditional gene fusion systems: Enhanced expression and solubility with SUMO Marblestone, Jeffrey G. Edavettal, Suzanne C. Lim, Yiting Lim, Peter Zuo, Xun Butt, Tauseef R. Protein Sci Article Despite the availability of numerous gene fusion systems, recombinant protein expression in Escherichia coli remains difficult. Establishing the best fusion partner for difficult-to-express proteins remains empirical. To determine which fusion tags are best suited for difficult-to-express proteins, a comparative analysis of the newly described SUMO fusion system with a variety of commonly used fusion systems was completed. For this study, three model proteins, enhanced green florescent protein (eGFP), matrix metalloprotease-13 (MMP13), and myostatin (growth differentiating factor-8, GDF8), were fused to the C termini of maltose-binding protein (MBP), glutathione S-transferase (GST), thioredoxin (TRX), NUS A, ubiquitin (Ub), and SUMO tags. These constructswere expressed in E. coli and evaluated for expression and solubility. As expected, the fusion tags varied in their ability to produce tractable quantities of soluble eGFP, MMP13, and GDF8. SUMO and NUS A fusions enhanced expression and solubility of recombinant proteins most dramatically. The ease at which SUMO and NUS A fusion tags were removed from their partner proteins was then determined. SUMO fusions are cleaved by the natural SUMO protease, while an AcTEV protease site had to be engineered between NUS A and its partner protein. A kinetic analysis showed that the SUMO and AcTEV proteases had similarK(M) values, but SUMOprotease had a 25-fold higher k(cat) than AcTEV protease, indicating a more catalytically efficient enzyme. Taken together, these results demonstrate that SUMO is superior to commonly used fusion tags in enhancing expression and solubility with the distinction of generating recombinant protein with native sequences. Cold Spring Harbor Laboratory Press 2006-01 /pmc/articles/PMC2242369/ /pubmed/16322573 http://dx.doi.org/10.1110/ps.051812706 Text en Copyright © Copyright 2006 The Protein Society |
spellingShingle | Article Marblestone, Jeffrey G. Edavettal, Suzanne C. Lim, Yiting Lim, Peter Zuo, Xun Butt, Tauseef R. Comparison of SUMO fusion technology with traditional gene fusion systems: Enhanced expression and solubility with SUMO |
title | Comparison of SUMO fusion technology with traditional gene fusion systems: Enhanced expression and solubility with SUMO |
title_full | Comparison of SUMO fusion technology with traditional gene fusion systems: Enhanced expression and solubility with SUMO |
title_fullStr | Comparison of SUMO fusion technology with traditional gene fusion systems: Enhanced expression and solubility with SUMO |
title_full_unstemmed | Comparison of SUMO fusion technology with traditional gene fusion systems: Enhanced expression and solubility with SUMO |
title_short | Comparison of SUMO fusion technology with traditional gene fusion systems: Enhanced expression and solubility with SUMO |
title_sort | comparison of sumo fusion technology with traditional gene fusion systems: enhanced expression and solubility with sumo |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2242369/ https://www.ncbi.nlm.nih.gov/pubmed/16322573 http://dx.doi.org/10.1110/ps.051812706 |
work_keys_str_mv | AT marblestonejeffreyg comparisonofsumofusiontechnologywithtraditionalgenefusionsystemsenhancedexpressionandsolubilitywithsumo AT edavettalsuzannec comparisonofsumofusiontechnologywithtraditionalgenefusionsystemsenhancedexpressionandsolubilitywithsumo AT limyiting comparisonofsumofusiontechnologywithtraditionalgenefusionsystemsenhancedexpressionandsolubilitywithsumo AT limpeter comparisonofsumofusiontechnologywithtraditionalgenefusionsystemsenhancedexpressionandsolubilitywithsumo AT zuoxun comparisonofsumofusiontechnologywithtraditionalgenefusionsystemsenhancedexpressionandsolubilitywithsumo AT butttauseefr comparisonofsumofusiontechnologywithtraditionalgenefusionsystemsenhancedexpressionandsolubilitywithsumo |